Multibody System Dynamics

, Volume 7, Issue 4, pp 331–355

Comparison of Automatic and Symbolic Differentiation in Mathematical Modeling and Computer Simulation of Rigid-Body Systems

  • Axel Dürrbaum
  • Willy Klier
  • Hubert Hahn
Article

Abstract

The objective of this paper is to check the efficiency and validity oftwo approaches for computing derivatives of complex functions,automatic differentiation using ADOLC and symbolicdifferentiation using MACSYMA. This has been done in three benchmarkexamples, where the gradient of a Helmholtz energy function has beencomputed for different dimensions of independent variables (Example 1)and Jacobian matrices of inverse kinematics of planar and spatialparallel robots (Examples 2 and 3) have been computed. The results havebeen evaluated under six criteria: preliminary implementation work,computation time, flexibility in applications, limits of applicability,accuracy, and memory requirements.

ADOLC was superior to MACSYMA concerning preliminarywork (programming, source code generation, and compilation) andmodifications of the functions to be differentiated and thedifferentiation task to be performed. In addition, contrary toMACSYMA, no limits of applicability were observed forADOLC, even in the simulation of complex multi-body systems.

On the other hand, for ADOLC the computation time of derivatives was 10 to 40 times higher than for MACSYMA. As aconsequence, differentiation by MACSYMA is better suited forreal-time applications like hardware in the loop simulation, real-timecontrol and real-time data processing than ADOLC.

Both programs provide numerical results of equal accuracy.

automatic differentiation kinematics of parallel robots rigid-body systems benchmark examples 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bischof, C, Carle, A., Corliss, G., Griewank, A. and Hovland, P.,‘ADIFOR-Generating derivative codes from Fortran programs’ Scientific Programming 1(1), 1992, 11–29.Google Scholar
  2. 2.
    Bischof, C., Carle, A., Khademi, P. and Mauer, A.,‘ADIFOR 2.0: Automatic differentiation of Fortran 77 programs’ IEEE Computational Science and Engineering 3(3), 1996, 18–32.Google Scholar
  3. 3.
    Bischof, C. and Roh, L. and Mauer, A.,‘ADIC-An extensible automatic differentiation tool for ANSI-C’ Software-Practice and Experience 27(12), 1997, 1427–1456.Google Scholar
  4. 4.
    Campbell, S.L. and Hollenbeck, R.,‘Automatic differentiation and implicit differential equation’ in Computational Differentiation, M. Berz, et al. (eds), SIAM, Philadelphia, PA, 1996, 215–227.Google Scholar
  5. 5.
    Campbell, S.L., Moore, E. and Zhong, Y.,‘Utilization of automatic differentiation in control algorithms’ IEEE Transactions on Automatic Control 39, 1994, 1047–1052.Google Scholar
  6. 6.
    Chirikjian, G.S. and Burdick, J.W.,‘A hyper-redundant manipulator’ IEEE Robotics and Automation Magazine 1(4) 1995, 22–29.Google Scholar
  7. 7.
    Fürst, D., Hecker, F. and Hahn, H.,‘Mathematical modeling and parameter identification of a planar servo-pneumatic test facility, Part I: Mathematical modeling and computer simulation’ Nonlinear Dynamics 14, 1997, 249–268.Google Scholar
  8. 8.
    Geng, Z., Hayes L., Lee, J.D. and Carroll, R.,‘On the dynamic model and kinematic analysis of a class of Stewart platforms’ Robotics and Autonomous Systems 9, 1992, 237–254.Google Scholar
  9. 9.
    Giering, R. and Kaminski, T.,‘Comparision of automatically generated code for evaluation of first and second order derivatives to hand written code from the Minpack-2 collection’ in Automatic Differentiation for Adjoint Code Generation, C. Faure (ed.), INRIA, Nancy, France, 1998, 31–38.Google Scholar
  10. 10.
    Grandinetti, L. and Conforti, D.,‘Numerical comparisons of nonlinear programming algorithms on serial and vector processors using automatic differentiation’ Mathematical Programming 42, 1988, 375–389.Google Scholar
  11. 11.
    Griewank, A.,‘On automatic differentiation’ in Mathematical Programming: Recent Developments and Applications, M. Iri and K. Tanabe (eds), Kluwer Academic Publishers, Dordrecht, 1989, 83–108.Google Scholar
  12. 12.
    Griewank, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Frontiers in Applied Mathematics, Vol. 19, SIAM, Philadelphia, PA, 2000.Google Scholar
  13. 13.
    Griewank, A., Juedes, D., Srinivasan, J. and Tyner, C.,‘ADOL-C, A package for the automatic differentiation of algorithms written in C/C++’ ACM Transactions on Mathematical Software 22(2), 1996, 131-167 (url: http://www.math.uni-dresden.de/adolc).Google Scholar
  14. 14.
    Hahn, H. and Fürst, D. and Hecker, F.,‘Theoretical modeling of multi-axis test facilities-A new approach’ in Abstracts of the 19th Conference of Theoretical and Applied Mechanics, Kyoto, Japan, T. Tatsumi, E. Watanabe and T. Kambe (eds), Elsevier Science Publishers, Amsterdam, 1996, 675.Google Scholar
  15. 15.
    Hahn, H. and Klier, W.,‘Nonlinear control of multi-axis test facilities with redundant servopneumatic actuators’ RTS-Bericht RT-25, Fachgebiet Regelungstechnik und Systemdynamic (Maschinenbau), Universität-Gh Kassel, 1998.Google Scholar
  16. 16.
    Hahn, H. and Klier, W.,‘Nonlinear control of planar robots with redundant servopneumatic actuators’ RTS-BerichtRT-24, Fachgebiet Regelungstechnik und Systemdynamic (Maschinenbau), Universität-Gh Kassel, 1998.Google Scholar
  17. 17.
    Hahn, H. and Klier,W.,‘Nonlinear control of spatial parallel robots with redundant servopneumatic actuators’ in Proceedings of the International Conference on Systems, Signals, Control, Computers, Durban, South Africa, Vol. II, V.B. Bajic (ed.), IAANSAD and SA Branch of ANS, 1998, 461–465.Google Scholar
  18. 18.
    Hahn, H. and Klier, W.,‘Control of spatial parallel robots with redundant and non redundant servopneumatic actuators’ 2000.Google Scholar
  19. 19.
    Hahn, H., Klier, W. and Leimbach, K.-D.,‘Nonlinear control of planar parallel robots with redundant servopneumatic actuators’ Zeitschrift für angewandte Mathematik und Mechanik (ZAMM) 79 (S1), 1999, 79–82.Google Scholar
  20. 20.
    Hahn, H. and Leimbach, K.-D.,‘Control strategies of servo-hydraulic multi-axis test facilities’ in Proceedings of the 2nd International Symposium Environmental Testing for Space Programmes, ESA/ESTEC, Noordwijk, The Netherlands, 1993, 77–84.Google Scholar
  21. 21.
    Hahn, H., Leimbach, K.-D. and Zhang, X.,‘Theoretical modelling and control concept of a multi-axis servohydraulic test facility’ in Proceedings of the IFAC Symposium on Large Scale System (LLS), IFAC, Peking, B. Lin, T. Chen and Y.P. Zheng (eds), Chinese Association of Automation, 1992, 260–265.Google Scholar
  22. 22.
    Hahn, H. and Piepenbrink, A.,‘Mathematical modelling, experimental identification and nonlinear control of a servopneumatic actuator, Part I’ 1998, to appear.Google Scholar
  23. 23.
    Hecker, F.,‘Identifikationsgestützte Regelung eines servopneumatischen Mehrachsenprüfstandes’ Ph.D. Thesis, Fachgebiet Regelungstechnik und Systemdynamik (Maschinenbau), Universität-Gh Kassel, 1997.Google Scholar
  24. 24.
    Husty, M.L.,‘An algorithm for solving the direct kinematic of Stewart-Gough-type platforms’ Mechanism and Machine Theory, 31(4), 1996, 365–379.Google Scholar
  25. 25.
    Juedes, D.,‘A taxonomy of automatic differentiation tools’ in Automatic Differentiation of Algorithms: Theory, Implementation, and Application, A. Griewank and G.F. Corliss (eds), SIAM, Philadelphia, PA, 1991, 315–329.Google Scholar
  26. 26.
    Kalaba, R. and Tischler, A.,‘Automatic derivative evaluation in the optimization of nonlinear models’ The Review of Economics and Statistics 66, 1984, 653–660.Google Scholar
  27. 27.
    Kalman, D. and Lindell, R.,‘Automatic differentiation in astrodynamical modeling’ Aerospace Report ATR-92(8151)-1, The Aerospace Corporation, Engineering and Technology Group, El Segundo, CA, 1992.Google Scholar
  28. 28.
    Klier, W. and Hahn, H.,‘Mathematisch-physikalische Modellgleichungen und Regelungsstrategien räumlicher servopneumatischer Parallelroboter’ in Tagungsband zur VDI/VDEGMA Fachtagung Robotik 2000, VDI-Verlag, Berlin, 2000, 71–76.Google Scholar
  29. 29.
    Klier, W., Hahn, H. and Neumann, M.,‘Mathematical modeling, computer simulation and control concepts of spatial servopneumatic parallel robots’ in Proceedings of the 32nd International Symposium on Robotics (ISR 2001), Seoul, Korea, 2001, 1719–1724.Google Scholar
  30. 30.
    Lazard, D., On the Representation of Rigid-Body Motions and Its Application to Generalized Platform Manipulators, Kluwer Academic Publishers, Dordrecht, 1993, 175–182.Google Scholar
  31. 31.
    Linnainmaa, S.,‘Taylor expansion of the accumulated rounding error’ BIT (Nordisk Tidskrift for Informationsbehandling), 16(1), 1976, 146–160.Google Scholar
  32. 32.
    Lorenc, A.C.,‘A global three-dimensional multivariate statistical interpolation scheme’ Monthly Weather Review 109, 1981, 701–721.Google Scholar
  33. 33.
    Merlet, J.-P.,‘Parallel manipulators: State of the art and perspectives, Advanced Robotics 8, 1994, 589–596.Google Scholar
  34. 34.
    Raghavan, M.,‘The Stewart platform of general geometry has 40 configurations’ Journal of Mechanical Design 115, 1993, 277–282.Google Scholar
  35. 35.
    Rall, L.B., Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science, Vol. 120, Springer-Verlag, Berlin, 1981Google Scholar
  36. 36.
    Röbenack, K.,‘Nutzung des automatischen Differenzierens in der nichtlinearen Regelungstheorie’ in Tagungsband 2. Gemeinsamer GAMM-GMA-Workshop “Theoretische Verfahren der Regelungstechnik”, Kassel, P.C. Müller (ed.), Bergische Universität-Gh Wuppertal, 1999.Google Scholar
  37. 37.
    Rothfuß , R. and Zeitz, M.,‘A toolbox for symbolic nonlinear feedback design’ in Proceedings of 13th IFAC World Congress, San Francisco, CA, J. Gertler, J. Gernz and M. Peskin (eds), Pergamon Press, 1995, 283–288.Google Scholar
  38. 38.
    Schiehlen, W.,‘Computer generation of equations of motion’ Computer Aided Design and Optimization of Mechanical System Dynamics, Springer-Verlag, Berlin, 1984, 183–215.Google Scholar
  39. 39.
    Schiehlen, W.,‘Symbolic computations in multibody systems’ Computer-Aided Analysis of Rigid and Flexible Mechanical Systems Kluwer Academic Publishers, Dordrecht, 1994, 101–136.Google Scholar
  40. 40.
    Schiehlen, W. and Kreuzer, E.,‘Rechnergestütztes Aufstellen der Bewegungsgleichungen gewöhnlicher Mehrkörpersysteme’ Ingenieur-Archive 46, 1977, 185–195.Google Scholar
  41. 41.
    Schlacher, K., Scheidl, R., Meindl, W., Kickinger, R. and Fuchs, W.,‘Automatic derivation of symbolic state equations for mechatronic systems’ in Proceedings 2nd European Nonlinear Oscillations Conference, Prague, Vol. 2, P. Pust (ed.), EUROMECH, 1996.Google Scholar
  42. 42.
    Sela, J.G.,‘Spectral modeling at the national meteorological center’ Monthly Weather Review 108, 1980, 1279–1292.Google Scholar
  43. 43.
    Soulié, E.J.,‘A few examples of least squares optimization in physical chemistry and astronomy’ in Trends in Mathematical Optimization, K.-H. Hoffmann, J.B. Hiriart-Urruty, C. Lemaréchal and J. Zowe (eds), Birkhäuser Verlag, Basel, 1988, 327–340.Google Scholar
  44. 44.
    Speelpenning, B.,‘Compiling fast partial derivatives of functions given by algorithms’ Ph.D. Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, IL, 1980.Google Scholar
  45. 45.
    Stewart, D.,‘A platform with six degrees of freedom’ in Proceedings of the Institute for Mechanical Engineering, Institute for Mechanical Engineering, London, 1965, 371–386.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Axel Dürrbaum
    • 1
  • Willy Klier
    • 1
  • Hubert Hahn
    • 1
  1. 1.Laboratory of Control and System Dynamics, Department of Mechanical EngineeringUniversity of KasselKasselGermany

Personalised recommendations