Water, Air, and Soil Pollution

, Volume 137, Issue 1–4, pp 117–140 | Cite as

Rainfall Concentrations and Wet Atmospheric Deposition of Phosphorus and Other Constituents in Florida, U.S.A.

  • H. J. Grimshaw
  • D. A. Dolske


Concentrations of phosphorus (P) and other constituents inweekly composited rain samples and concurrently acquired rainfallvolumes, collected from September 1992 through October 1993, wereused to estimate volume-weighted concentrations and wetatmospheric deposition rates, and compared to estimates fromprevious studies. Since this study’s purpose was to estimateregionally representative concentrations and rates of wetatmospheric deposition, sampling locations were chosen to avoidsites characterized by substantial local resuspension orrecycling phenomena. Significant differences were found in the wet deposition rates of calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), hydrogen (H), and chloride (Cl) ions between sampling stationsin Florida. Consequently, statewide deposition rates and volume-weighted concentrations were estimated only for P, and fororthophosphate (PO4), ammonium (NH4), nitrate (NO3) and sulfate (SO4) ions that were not found to be spatially variable. Over the period of record, the mean rate of wet atmospheric P deposition across the state, and the mean rainfall P concentration, were found to be 25±>5 μg P M-2 wk-1 and 1.3±0.1 μg P L -1, respectively.

atmospheric deposition Everglades phosphorus rainfall 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA: 1998, Standard Methods for the Examination of Water and Wastewater, 20th ed., APHA Inc., New York, 1085 pp.Google Scholar
  2. Artaxo, P., Maenhaut, W., Storms, H. and Van Grieken, R.: 1990, ‘Aerosol characteristics and sources for the Amazon Basin during the wet season’, J. Geophys. Res. 95, 16971–16985.Google Scholar
  3. Baker, L. A., Herlihy, A. T. and Kaufmann, P. R. and Eilers, J. M.: 1991, ‘Acid lakes and streams in the United States: the role of acid deposition’, Science 252(5009), 1151–1154.Google Scholar
  4. Basu, A. P.: 1967, ‘On two K-sample rank tests for censored data’, Ann. of Math. Stat. 38, 1520–1535.Google Scholar
  5. Bergametti, G., Remoudaki, E., Losno, R., Steiner, E., Chatenet, B. and Buat-Menard, P.: 1992, ‘Source, transport, and deposition of atmospheric phosphorus over the northwestern Mediterranean’, J. Atmos. Chem. 14, 501–513.Google Scholar
  6. Bigelow, D. S.: 1984, ‘Instruction manual: NADP/NTN site selection and installation’, Nat. Atmos. Deposition Program, Nat. Resourc. Ecol. Lab., Fort Collins, CO, U.S.A., 23 pp.Google Scholar
  7. Bowersox, V. C.: 1984, ‘Data validation procedures for wet deposition samples at the central analytical laboratory of the National Atmospheric Deposition Program’, in T. R. Johnson and S. J. Penkala (eds), Transactions of the APCA Internat. Specialty Conf. on Quality Assurance in Air Pollut. Measurements, Pittsburgh, PA, U.S.A., October 1984, pp. 55–67.Google Scholar
  8. Breslow, N.: 1970, ‘A generalized Kruskal-Wallis Test for comparing K samples subject to unequal patterns of censorship’, Biometrika 57(3), 579–594.Google Scholar
  9. Brezonik, P. L.: 1975, ‘Nutrients and Other Biologically Active Substances in Atmospheric Precipitation’, in D. H. Matheson and F. C. Elders (eds), Atmos. Contribution to the Chem. of Lake Waters: First Speciality Symposium of the Internat. Assoc. for Great Lakes Res., Longford Mills, Ontario, Canada, 28 September to 1 October 1975, pp. 166–186.Google Scholar
  10. Brezonik, P. L., Hendry Jr., C. D., Edgerton, E. S., Schultze, R. L. and Crisman, T. L.: 1983, ‘Acidity, Nutrients, and Minerals in Atmospheric Precipitation over Florida: Deposition Patterns, Mechanisms, and Ecological Effects’, EPA-600/3-83-004, Environ. Res. Lab., Corvallis, OR, U.S.A., 203 pp.Google Scholar
  11. Burnett, W. C. and Hull, C. D.: 1996, ‘Radiochemistry of Florida phosphogypsum’, J. Environ. Radioactivity 32(3), 213–238.Google Scholar
  12. Chen, H. M.: 1994, ‘Estimation of Nitrogen, Phosphorus, and Sulfur Deposition to Long Island Sound’, Masters Thesis, University of Connecticut, Storrs, CT, U.S.A., 137 pp.Google Scholar
  13. Chen, L., Arimoto, R. and Duce, R. A.: 1985, ‘The sources and forms of phosphorus in marine aerosol particles and rain from northern New Zealand’, Atmos. Environ. 19(5), 779–787.Google Scholar
  14. Conover, W. J.: 1999, Practical Nonparametric Statistics, 3rd ed., John Wiley & Sons, New York, 584 pp.Google Scholar
  15. Conover, W. J. and Iman, R. L.: 1979, ‘On multiple-comparisons procedures’, Tech. Rept. LA-7677-MS, Los Alamos Sci. Lab., Los Alamos, NM, 14 pp.Google Scholar
  16. Dossett, S. R. and Bowersox, V. C.: 1999, ‘National Trends Network Site Operation Manual’, NADP Manual 1999-01, Nat. Atmos. Deposition Program Office, IL State Wat. Survey Div., Campaign, IL, U.S.A., 93 pp.Google Scholar
  17. Duce, R. A.: 1986, ‘The Impact of Atmospheric Nitrogen, Phosphorus, and Iron Species on Marine Biological Productivity’, in P. Buat-Menard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, Reidel Publishers, Dordrecht, The Netherlands, pp. 497–528.Google Scholar
  18. Edgerton, E. S., Brezonik, P. L. and Hendry, C. D.: 1981, ‘Atmospheric Deposition of Acidity and Sulfur in Florida’, in S. J. Eisenreich (ed.), Atmos. Pollutants in Nat. Waters, Ann Arbor Science Publishers, Ann Arbor, MI, U.S.A., pp. 237–285.Google Scholar
  19. Environ. Sci. and Engin.: 1983, ‘Florida Acid Deposition Study Monitoring Program Phase 2 Report’, Environ. Sci. and Engin., Inc., Gainesville, FL, U.S.A., 161 pp.Google Scholar
  20. Environ. Sci. and Engin.: 1986, ‘Final Report: A Synthesis of the Florida Acid Deposition Study’, Environ. Sci. and Engin., Inc., Gainesville, FL, U.S.A., 737 pp.Google Scholar
  21. Environ. Sci. and Engin.: 1987, ‘Florida Acid Deposition Study Monitoring Program Five-Year Data Summary Report’, Environ. Sci. and Engin., Inc., Gainesville, FL, U.S.A., 228 pp.Google Scholar
  22. Flora, M. D. and Rosendahl, P. C.: 1982, ‘The Impact of Atmospheric Deposition on the Water Quality of Everglades National Park’, in Proc. of the Internat. Symposium on Hydrometeorology, Amer. Water Resourc. Assoc., St. Louis, MO, U.S.A., June 1982, pp. 485–491.Google Scholar
  23. Gorham, E.: 1955, ‘On the acidity and salinity of rain’, Geochimica et Cosmochimica Acta 7, 231–239.Google Scholar
  24. Gorham, E.: 1958, ‘The influence and importance of daily weather conditions in the supply of chloride, sulfate, and other ions to fresh waters from atmospheric precipitation’, Phil. Trans. Roy. Soc. London, B 241, 147–178.Google Scholar
  25. Graham, W. F.: 1977, ‘Atmospheric Pathways of the Phosphorus Cycle’, Ph.D. Thesis, Univ. of Rhode Island, Kingston, RI, U.S.A., 259 pp.Google Scholar
  26. Graham, W. F. and Duce, R. A.: 1979, ‘Atmospheric pathways of the phosphorus cycle’, Geochimica et Cosmochimica Acta 43, 1195–1208.Google Scholar
  27. Graham, R. C. and Obal, J.: 1989, ‘The non-parametric statistical evaluation of precipitation chemistry sampler intercomparison data’, Atmos. Environ. 23(5), 1117–1130.Google Scholar
  28. Graham, R. A. and Robertson, J. K.: 1990, ‘Atmospheric deposition sampler intercomparison’, Water, Air, and Soil Pollut. 37, 139–147.Google Scholar
  29. Grimshaw, H. J., Rosen, M., Swift, D. R. Rodberg, K. and Noel, J. M.: 1993, ‘Marsh phosphorus concentrations, phosphorus content and species composition of Everglades periphyton communities’, Arch. Hydrobiol. 128(3), 257–276.Google Scholar
  30. Grimshaw, H. J., Wetzel, R. G., Brandenburg, M., Segerblom, K., Wenkert, L. J., Marsh, G. A., Charnetzky, W., Haky, J. E. and Carraher, C.: 1997, ‘Shading of periphyton communities by wetland emergent macrophytes: decoupling of algal photosynthesis from microbial nutrient retention’, Arch. Hydrobiol. 139(1), 17–27.Google Scholar
  31. Hendry, C. D., Brezonik, P. L. and Edgerton, E. S.: 1981, ‘Atmospheric Deposition of Nitrogen and Phosphorus in Florida’, in S. J. Eisenreich (ed.), Atmos. Pollutants in Nat. Waters, Ann Arbor Science Publishers, Ann Arbor, MI, U.S.A., pp. 199–215.Google Scholar
  32. Hendry, C. D., Berish, C. W. and Edgerton, E. S.: 1984, ‘Precipitation chemistry in Turrialba, Costa Rica’, Water Resourc. Res. 20, 1677–1684.Google Scholar
  33. Irwin, G. A. and Kirkland, R. T.: 1980, ‘Chemical and Physical Characteristics of Precipitation at Selected Sites in Florida’, Wat. Resourc. Investigations 80-81, U.S. Geol. Survey, Wat. Resourc. Div., Tallahassee, FL, U.S.A., 70 pp.Google Scholar
  34. Junge, G. E. and Gustafson, P. E.: 1958, ‘On the distribution of sea salt over the United States and its removal by precipitation’, Tellus 9 (1957), 164–173.Google Scholar
  35. Kendall, M. and Stuart, A.: 1977, The Advanced Theory of Statistics: Volume 1: Distribution Theory, 4th ed., MacMillan Publishing Co., Inc., New York, 472 pp.Google Scholar
  36. Leslie, A. C. D.: 1981, ‘Aerosol emissions from forest and grassland burnings in the southern Amazon Basin and central Brazil’, Nuclear Instruments and Methods 181, 345–351.Google Scholar
  37. Likens, G. E.: 1972, ‘The chemistry of precipitation in the Central Finger Lakes Region’, Tech. Rept. 50, Water Resource and Marine Center, Cornell Univ., Ithaca, NY, U.S.A., 47 pp.Google Scholar
  38. Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S. and Munn, R. E.: 1984, ‘Long-term trends in precipitation chemistry at Hubbard Brook, New Hampshire’, Atmos. Environ. 18, 2641–2647.Google Scholar
  39. Madsen, B. C.: 1981, ‘Acid rain at Kennedy Space Center, Florida: recent observations’, Atmos. Environ. 15(5), 853–862.Google Scholar
  40. Madsen, B. C., Dreschel, T. W. and Hinkle, C. R.: 1989, ‘Characterization and Evaluation of Acid Rain in Central Florida from 1978 to 1987’, Rept. NAS10-10285, Univ. of Central Florida and The Bionetics Corp., Nat. Aeronautics and Space Admin., John F. Kennedy Space Center, FL, U.S.A., 42 pp.Google Scholar
  41. Messer, J. J. and Brezonik, P. L.: 1981, ‘Importance of Atmospheric Fluxes to the Nitrogen Mass Balance of Lakes in the Florida Peninsula’, in S. J. Eisenreich (ed.), Atmos. Pollutants in Nat. Waters, Ann Arbor Sci. Publishers, Ann Arbor, MI, U.S.A., pp. 217–236.Google Scholar
  42. Murphy, T. J.: 1974, ‘Sources of Phosphorus Inputs from the Atmosphere and their Significance to Oligotrophic Lakes’, Rept. 92, IL. Wat. Res. Cent., Urbana, IL, U.S.A., 45 pp.Google Scholar
  43. Murphy, T. J. and Doskey, P. V.: 1975, ‘Inputs of Phosphorus from Precipitation to Lake Michigan’, EPA 600/3-75-005, U.S. Environ. Protection Agency, 27 pp.Google Scholar
  44. Nat. Aeronautics and Space Admin.: 1979, ‘Environmental Impact Statement for the Kennedy Space Center’, Draft Rept., John F. Kennedy Space Center, Cape Canaveral, FL, 386 pp.Google Scholar
  45. Olaveson, M. M. and Nalewajko, C.: 1994, ‘Acid rain and freshwater algae’, Ergebnisse der Limnologie 42, 99–123.Google Scholar
  46. Peden, M. E., Bachman, S. R., Brennan, C. J., Demir, B., James, K. O. W., Kaiser, B. W., Lockard, J. M., Rothert, J. W., Sauer, J., Skowron, L. M. and Slater, N. J.: 1986, ‘Development of Standard Methods for the Collection and Analysis of Precipitation’, Rept. No. 381, IL State Wat. Survey Div., Campaign, IL, U.S.A., 278 pp.Google Scholar
  47. Pellett, G. L.: 1977, ‘Washout of HCl and Application to Solid Rocket Exhaust Clouds’, ERDA Symp. Ser., Precipitation Scavenging Conf. Proc. 41, Orlando, FL, U.S.A., pp. 437–465.Google Scholar
  48. Powell, S. T.: 1964, ‘Quality of Water’, in V. T. Chow (ed.), Handbook of Applied Hydrology, McGraw-Hill, New York, NY, U.S.A., pp. 1453–1490.Google Scholar
  49. Prospero, J. M., Nees, R. T. and Uematsu, M.: 1987, ‘Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida’, J. of Geophys. Res. 92(D12), 14723–14731.Google Scholar
  50. Prospero, J. M.: 1990, ‘Mineral-Aerosol Transport to the North Atlantic and North Pacific: The Impact of African and Asian Sources’, in A. H. Knap (ed.), The Long-Range Atmospheric Transport of Natural and Contaminant Substances, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 59–86.Google Scholar
  51. Schindler, D. W.: 1988, ‘Effects of acid rain on freshwater ecosystems’, Science 239(4836), 149–157.Google Scholar
  52. Shaw, R. D., Trimbee, A. M., Minty, A., Fricker, H. and Prepas, E. E.: 1989, ‘Atmospheric deposition of phosphorus and nitrogen in central Alberta with emphasis on Narrow Lake’, Water, Air, and Soil Pollut. 43, 119–134.Google Scholar
  53. Susko, M.: 1979, ‘Electrets used in measuring rocket exhaust effluents from a space shuttle model’, J. Appl. Met. 18, 48–56.Google Scholar
  54. Talbot, R. W., Harriss, R. C., Browell, V., Gregory, G. L., Sebacher, D. I., and Beck, S. M.: 1986, ‘Distribution and geochemistry of aerosols in the tropical North Atlantic troposphere: relationship to Saharan dust’, J. Geophys. Res. 91, 5173–5182.Google Scholar
  55. Taylor, S. R. and McLennan, S. M.: 1985, The Continental Crust: Its Composition and Evolution, Blackwells, Oxford, England, 312 pp.Google Scholar
  56. Yang, X., Miller, D. R., Xu, X., Yang, L. H., Chen, H. and Nikolaidis, N. P.: 1996, ‘Spatial and temporal variations of atmospheric deposition in interior and coastal connecticut’, Atmos. Environ. 30(22), 3801–3810.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Ecosystem Restoration Department, South Florida Water Management DistrictWest Palm BeachU.S.A.
  2. 2.Office of Air Quality, Illinois State Water SurveyChampaignU.S.A

Personalised recommendations