Stochastic Method for the Solution of Unconstrained Vector Optimization Problems

  • S. Schäffler
  • R. Schultz
  • K. Weinzierl


We propose a new stochastic algorithm for the solution of unconstrained vector optimization problems, which is based on a special class of stochastic differential equations. An efficient algorithm for the numerical solution of the stochastic differential equation is developed. Interesting properties of the algorithm enable the treatment of problems with a large number of variables. Numerical results are given.

vector optimization problems curves of dominated points Brownian motion stochastic differential equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FISHBURN, P. C., Lexicographic Orders, Utilities, and Decision Rules, Management Science, Vol. 20, pp. 1442–1471, 1973.Google Scholar
  2. 2.
    HUBER, G. P., Multiattribute Utility Models: A Review of Field and Fieldlike Studies, Management Science, Vol. 20, pp. 1393–1402, 1973.Google Scholar
  3. 3.
    KEENEY, R. L., Utility Functions for Multiattributed Consequences, Management Science, Vol. 18, pp. 276–287, 1972.Google Scholar
  4. 4.
    YU, P., A Class of Decisions for Group Decision Problems, Management Science, Vol. 19, pp. 936–946, 1973.Google Scholar
  5. 5.
    ZELENY, M., A Concept of Compromise Solutions and the Method of the Displaced Ideal, Computational Operations Research, Vol. 7, pp. 479–489, 1974.Google Scholar
  6. 6.
    HILLERMEIER, C., Eine Homotopiemethode zur Vektoroptimierung, Habilitation Thesis, Technical University of Munich, 1999.Google Scholar
  7. 7.
    FONSECA, C. M., and FLEMING, P. J., An Overview of Evolutionary Algorithms in Multiobjective Optimization, Evolutionary Computation, Vol. 3, pp. 416–423, 1995.Google Scholar
  8. 8.
    TIMMEL, G., Ein stochastisches Suchverfahren zur Bestimmung der optimalen Kompromisslo¨sung bei statistischen polykriteriellen Optimierungsaufgaben, TH Illmenau, Report 5, 1980.Google Scholar
  9. 9.
    BAUER, H., Wahrscheinlichkeitstheorie, Walter de Gruyter, Berlin, Germany, 1991.Google Scholar
  10. 10.
    PROTTER, P., Stochastic Integration and Differential Equations, Springer, New York, NY, 1990.Google Scholar
  11. 11.
    SCHäFFLER, S., Unconstrained Global Optimization Using Stochastic Integral Equations, Optimization, Vol. 35, pp. 43–60, 1995.Google Scholar
  12. 12.
    HASMINSKIJ, R. Z., Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Amsterdam, Netherlands, 1980.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • S. Schäffler
    • 1
  • R. Schultz
    • 2
  • K. Weinzierl
    • 3
  1. 1.Universität der Bundeswehr, EIT 1NeubibergGermany
  2. 2.Corporate TechnologySiemens AGMünchenGermany
  3. 3.Automation and ControlSiemens AGErlangenGermany

Personalised recommendations