Tribology Letters

, Volume 12, Issue 4, pp 217–227

Chemical Control of Friction: Mixed Lubricant Monolayers

  • O.K. Dudko
  • A.E. Filippov
  • J. Klafter
  • M. Urbakh
Article

Abstract

Controlling frictional behavior in nanoscale sheared systems can be made possible when the relationship between the macroscopic frictional response and the microscopic properties of the sheared systems is established. Here, a new approach is proposed for tuning the frictional response and obtaining desirable frictional properties. This tuning is achieved through shear-induced phase transitions in a mixed lubricant monolayer consisting of a base solvent and an additive. The interaction between the solvent and additive molecules and their relative concentrations are shown to be the major parameters in determining the magnitude of the friction force and the nature of the response (stick–slip or sliding).

friction control embedded monolayers phase transitions additives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Bhushan, J.N. Israelachvili and U. Landman, Nature 374 (1995) 607.Google Scholar
  2. [2]
    J. Klein and E. Kumacheva, Science 269 (1995) 816.Google Scholar
  3. [3]
    S. Granick, Phys. Today 52 (1999) 26.Google Scholar
  4. [4]
    G. Hanhner and N.D. Spencer, Phys. Today 51 (1998) 22.Google Scholar
  5. [5]
    M.G. Rozman, M. Urbakh, J. Klafter and F.J. Elmer, J. Phys. Chem. 102 (1998) 7924.Google Scholar
  6. [6]
    G. He, M.H. Muser and M.O. Robbins, Science 284 (1999) 1650.Google Scholar
  7. [7]
    B.N.J. Persson, Sliding Friction. Physical Principles and Applications (Springer, Berlin, 2000).Google Scholar
  8. [8]
    F. Family, H.G.E. Hentschel and Y. Braiman, J. Phys. Chem. B104 (2000) 3984.Google Scholar
  9. [9]
    H.-W. Hu, G.A. Carson and S. Granick, Phys. Rev. Lett. 66 (1991) 2758.Google Scholar
  10. [10]
    P.A. Thompson, M.O. Robbins and G.S. Greast, Israel J. Chem. 35 (1995) 93.Google Scholar
  11. [11]
    M.G. Rozman, M. Urbakh and J. Klafter, Phys. Rev. Lett. 77 (1996) 683.Google Scholar
  12. [12]
    E. Kumacheva and J. Klein, J. Chem. Phys. 108 (1998) 7010.Google Scholar
  13. [13]
    V. Zaloj, M. Urbakh and J. Klafter, Phys. Rev. Lett. 82 (1999) 4823.Google Scholar
  14. [14]
    C. Drummond and J. Israelachvili, Phys. Rev. E 63 (2001) 041506.Google Scholar
  15. [15]
    A.G. Papay, Lubr. Eng. 47 (1991) 271.Google Scholar
  16. [16]
    T. Kugimiya et al., SAE paper 952348 (1995).Google Scholar
  17. [17]
    M. Ruths, H. Ohtani, M.L. Greenfield and S. Granick, Tribol. Lett. 6 (1999) 207.Google Scholar
  18. [18]
    M.L. Greenfield and H. Ohtani, Tribol. Lett. 7 (1999) 137.Google Scholar
  19. [19]
    A.E. Filippov, J. Klafter and M. Urbakh, Phys. Rev. Lett. (in press).Google Scholar
  20. [20]
    R.Z. Sagdeev, D.A. Usikov and G.M. Zaslavsky, Nonlinear Physics: From the Pendulum to Turbulence and Chaos (Harwood Academic, 1992).Google Scholar
  21. [21]
    J.M. Kosterlitz and D.J. Thouless, J. Phys. C: Solid State Phys. 6 (1973) 1181.Google Scholar
  22. [22]
    H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97 (1993) 11300.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • O.K. Dudko
    • 1
  • A.E. Filippov
    • 2
  • J. Klafter
    • 1
  • M. Urbakh
    • 1
  1. 1.School of ChemistryTel Aviv UniversityTel AvivIsrael
  2. 2.Donetsk Institute for Physics and Engineering of NASUDonetskUkraine

Personalised recommendations