Ecotoxicology

, Volume 11, Issue 3, pp 181–197

Effects of a Mixture of Two Insecticides in Freshwater Microcosms: II. Responses of Plankton and Ecological Risk Assessment

  • Paul J. Van den Brink
  • Elizabeth M. Hartgers
  • Ronald Gylstra
  • Fred Bransen
  • Theo C.M. Brock
Article

Abstract

This paper reports on the chronic effects of a mixture of the insecticides chlorpyrifos and lindane in freshwater microcosms. Chronic treatment levels corresponding to concentrations of 0, 0.005, 0.01, 0.05, 0.1 and 0.5 times the LC50 of the most sensitive standard test organism were evaluated. The zooplankton community structure was altered from the 0.05*LC50 treatment level upwards. Cladocerans were the most susceptible group, followed by Copepoda and Ostracoda. Rotifera increased in abundance at the higher treatment levels. Increased abundance of some phytoplankton taxa and increased chlorophyll-a levels were found at the two highest treatment levels, most probably a consequence of decreased grazing pressure. Threshold levels for the mixture, both at population and community/ecosystem level, corresponded well with those reported in the literature for the individual compounds. The overall risk assessment indicates no antagonistic or synergistic effects of the mixture at ecosystem level. It was found that the safety factors set by the Uniform Principles for individual compounds also ensure protection against chronic exposure to a mixture of insecticides at community level, though not always at species level.

chlorpyrifos ecological risk assessment lindane pesticides plankton semi-field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldenberg, T. and Slob, W. (1993). Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol. Environ. Safety 25, 48–63.Google Scholar
  2. AQUIRE (1998). AQUIRE, (AQUatic toxicity Information REtrieval) database consulted on July 13th, 1998 on web page http: //www.epa.gov/med/databases/databases.html#aquire.Google Scholar
  3. Barron, M.G. and Woodburn, K.B. (1995). Ecotoxicology of chlorpyrifos. Rev. Environ. Contaminat. Toxicol. 143, 1–93.Google Scholar
  4. Biever, R.C., Giddings, J.M., Kiamos, M., Annunziato, M.F., Meyerhoff, R. and Racke, K. (1994). Effects of chlorpyrifos on aquatic microcosms over a range of off-target drift exposure levels. Brighton, UK: Brighton Crop Protection Conference—Pests and Diseases, 1367–72.Google Scholar
  5. Bluzat, R. and Seuge, J. (1979). Effects of three insecticides (lindane, fenthion and carbaryl) on the acute toxicity to four aquatic invertebrate species and the chronic toxicity to the pulmonate mollusc Lymnaea. Environ. Pollut. 18, 51–70.Google Scholar
  6. Boyle, T.P. and Fairchild, J.F. (1997). The role of mesocosm studies in ecological risk analysis. Ecol. Appl. 7, 1099–102.Google Scholar
  7. Brock, T.C.M., Crum, S.J.H., Van Wijngaarden, R.P.A., Budde, B.J., Tijink, J., Zuppelli, A. and Leeuwangh, P. (1992). Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free model ecosystems: I Fate and primary effects of the active ingredient chlorpyrifos. Archi. Environ. Contaminat. Toxicol. 23, 69–84.Google Scholar
  8. Brock, T.C.M., Vet, J.J.R.M., Kerkhofs, M.J.J., Lijzen, J., Van Zuilenkom, W.J. and Gylstra, R. (1993). Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free model ecosystems: III Aspects of ecosystem functioning. Arch. Environ. Contaminat. Toxicol. 25, 160–9.Google Scholar
  9. Brock, T.C.M., Roijackers, R.M.M., Rollon, R., Bransen, F. and Van der Heyden, L. (1995). Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms. II. Responses of macrophytes, periphyton and macroinvertebrate grazers. Archive für Hydrobiologie 134, 53–74.Google Scholar
  10. Brock, T.C.M., Van Wijngaarden, R.P.A. and Van Geest, G.J. (2000). Ecological risks of pesticides in freshwater ecosystems Part 2: Insecticides. Alterra-report 089, Wageningen, The Netherlands: Alterra Green World Research.Google Scholar
  11. Calamari, D., Galassi, S., Setti, F. and Vighi, M. (1983). Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere 12, 253–62.Google Scholar
  12. Campbell, P.J., Arnold, D.J.S., Brock, T.C.M., Grandy, N.J., Heger, W., Heimbach, F., Maund, S.J. and Streloke, M. (1999). Guidance document on Higher tier Aquatic Risk Assessment for Pesticides (HARAP). Brussels, Belgium: SETAC-Europe.Google Scholar
  13. Cuppen, J.G.M., Van den Brink, P.J., Van der Woude, H., Zwaardemaker, N. and Brock, T.C.M. (1997). Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. II. Invertebrates and community metabolism. Ecotoxicol. Environ. Safety 38, 25–35.Google Scholar
  14. Cuppen, J.G.M., Van den Brink, P.J., Uil, K.F., Camps, E. and Brock, T.C.M. (2000). Impact of the fungicide carbendazim in freshwater microcosms II Water quality, breakdown of Particulate Organic Matter and responses of macro-invertebrates. Aqua. Toxicol. 48, 233–50.Google Scholar
  15. Cuppen, J.G.M., Crum, S.J.H., Van den Heuvel, H.H., Smidt, R.A. and Van den Brink, P.J. (2002) The effects of a mixture of two insecticides on freshwater microcosms. I. Fate of insecticides and responses of macroinvertebrates. Ecotoxicology 11, 19–34.Google Scholar
  16. De Bruin, J., Busser, F., Seinen, W. and Hermens, J. (1989). Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow-stirring method”. Environ. Toxicol. Chem. 8, 499–512.Google Scholar
  17. European Union, (1997). Council Directive 97/57/EC of September 21, 1997; Establishing Annex VI to Directive 91/414/EEC Concerning the Placing of Plant Protection Products on the Market. Official J. Eur. Commun. L265, 87–109.Google Scholar
  18. Hanazato, T. (1998). Response of a zooplankton community to insecticide application in experimental ponds: a review and the implications of the effects of chemicals on the structure and functioning of freshwater communities. Environ. Pollut. 101, 361–73.Google Scholar
  19. Hartgers, E.M., Aalderink, G.H., Van den Brink, P.J., Gylstra, R., Wiegman, J.W.F. and Brock, T.C.M. (1998). Ecotoxicological threshold levels of a mixture of herbicides (atrazine, diuron and metholachlor) in freshwater microcosms. Aquat. Ecol. 32, 135–52.Google Scholar
  20. Johnson, W.W. and Finley, M.T. (1980). Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates. Resources Publications 137, Washington D.C.: Fish and Wildlife Service, U.S.D.I.Google Scholar
  21. Kersting, K. and Van Wijngaarden, R.P.A. (1992). Effects of chlorpyrifos on a microecosystem. Environ. Toxicol. Chem. 11, 365–72.Google Scholar
  22. Mayer, F.L. and Ellersieck, M.R. (1986). Manual of acute toxicity: interpretation and database for 410 chemicals and 66 species of freshwater animals. U.S. Fish and Wildlife Service Resource Publication 160, Washington D.C.: US Department of the Interior.Google Scholar
  23. Mitchell, G.C., Bennett, D. and Pearson, N. (1993). Effects of lindane on macroinvertebrates and periphyton in outdoor artificial streams. Ecotoxicol. Environ. Safety 25, 90–102.Google Scholar
  24. Moed, J.R. and Hallegraeff, G.M. (1978). Some problems in the estimation of chlorophyll-a and phaeopigments from pre-and post-acidification spectrophotometric measurements. Internationale Revue der gesamten Hydrobiologie 63, 787–800.Google Scholar
  25. Moore, M.T., Huggett, D.B., Gillespie, W.B., Rodgers, J.H. and Cooper, C.M. (1998). Comparative toxicity of chlordane, chlorpyrifos, and aldicarb to four aquatic testing organisms. Arch. Environ. Contaminat. Toxicol. 34, 152–7.Google Scholar
  26. Peither, A., Jüttner, I., Kettrup, A. and Lay, J.P. (1996). A pond mesocosm study to determine direct and indirect effects of lindane on a natural zooplankton community. Environ. Pollut. 93, 49–56.Google Scholar
  27. Stay, F.S., Flum, T.E., Shannon, L.J. and Yount, J.D. (1989). An assessment of the precision and accuracy of SAM and MFC microcosms exposed to toxicants. In U.M. Cowgill and L.R. Williams (eds), Aquatic Toxicology and Hazard Assessment, 12th Symposium. STP 1027, pp. 189–203. Philadelphia, PA: American Society for Testing and Materials.Google Scholar
  28. Stephenson, R.R. (1983). Effects of water hardness, water temperature and size of test organism on the susceptibility of the freshwater shrimp Gammarus pulex (L.) to toxicants. Bull. Environ. Contaminat. Toxicol. 31, 459–66.Google Scholar
  29. Van den Brink, P.J., Van Donk, E., Gylstra, R., Crum, S.J.H. and Brock, T.C.M. (1995). Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor freshwater microcosms. Chemosphere 31, 3181–200.Google Scholar
  30. Van den Brink, P.J., Van Wijngaarden, R.P.A., Lucassen, W.G.H., Brock, T.C.M. and Leeuwangh, P. (1996). Effects of the insecticide Dursban 4E (active ingredient chlorpyrifos) in outdoor experimental ditches: II. Invertebrate community responses and recovery. Environ. Toxicol. Chem. 15, 1143–53.Google Scholar
  31. Van den Brink, P.J. and Ter Braak, C.J.F. (1998). Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquat. Ecol. 32, 163–78.Google Scholar
  32. Van den Brink, P.J. and Ter Braak, C.J.F. (1999). Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–48.Google Scholar
  33. Van den Brink, P.J., Posthuma, L. and Brock, T.C.M. (2002). The value of the Species Sensitivity Distribution concept for predicting field effects: (non-)confirmation of the concept using semi-field experiments. In L. Posthuma, T.P. Traas and G.W. Suter (eds), The Use of Species Sensitivity Distributions in Ecotoxicology. Boca Raton, FL: Lewis Publishers.Google Scholar
  34. Van Donk, E., Abdel-Hamid, M.I., Faafeng, B.A. and Källqvist, T. (1992). Effects of Dursban® 4E and its carrier on three algal species during exponential and P-limited growth. Aquat. Toxicol. 23, 181–92.Google Scholar
  35. Van Donk, E., Prins, H., Voogd, H.M., Crum, S.J.H. and Brock, T.C.M. (1995). Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms I Responses of plankton and zooplanktivorous insects. Archiv für Hydrobiologie 133, 417–39.Google Scholar
  36. Van Straalen, N.M. and Denneman, C.A.J. (1989). Ecotoxicological evaluation of soil quality criteria. Ecotoxicol. Environ. Safety 18, 241–51.Google Scholar
  37. Van Wijngaarden, R.P.A., Leeuwangh, P., Lucassen, W.G.H., Romijn, K., Ronday, R., Van der Velde, R. and Willigenburg, W. (1993). Acute toxicity of chlorpyrifos to fish, a newt and aquatic invertebrates. Bull. Environ. Contaminat. Toxicol. 51, 716–23.Google Scholar
  38. Versteeg, D.J., Belanger, S.E. and Carr, G.J. (1999). Understanding single-species and model ecosystem sensitivity: data based comparison. Environ. Toxicol. Chem. 18, 1329–46.Google Scholar
  39. Ward, S., Arthington, A.H. and Pusey, B.J. (1995). The effects of a chronic application of chlorpyrifos on the macroinvertebrate fauna in an outdoor artificial stream system: species responses. Ecotoxicol. Environ. Safety 30, 2–23.Google Scholar
  40. Williams, D.A. (1972). The comparison of several dose levels with zero dose control. Biometrics 28, 519–31Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Paul J. Van den Brink
    • 1
  • Elizabeth M. Hartgers
    • 2
    • 3
  • Ronald Gylstra
    • 2
  • Fred Bransen
    • 2
  • Theo C.M. Brock
    • 1
  1. 1.Alterra Green World ResearchWageningen University and Research centreWageningenThe Netherlands;
  2. 2.Aquatic Ecology and Water Quality Management GroupWageningen UniversityThe Netherlands
  3. 3.Wageningen University and Research centreWageningenThe Netherlands
  4. 4.RIKZ National Institute for Coastal and Marine ManagementThe HagueThe Netherlands

Personalised recommendations