Catalysis Letters

, Volume 79, Issue 1–4, pp 21–25 | Cite as

Catalytic Decomposition of Hydrazine over Supported Molybdenum Nitride Catalysts in a Monopropellant Thruster

  • Xiaowei Chen
  • Tao Zhang
  • Liangen Xia
  • Tao Li
  • Mingyuan Zheng
  • Zili Wu
  • Xiaodong Wang
  • Zhaobin Wei
  • Qin Xin
  • Can Li
Article

Abstract

The catalytic decomposition of hydrazine over a series of MoNx/γ-Al2O3 catalysts with different Mo loadings was investigated in a monopropellant thruster (10 N). When the Mo loading is equal to or higher than the monolayer coverage of MoO3 on γ-Al2O3, the catalytic performance of the supported molybdenum nitride catalyst is close to that of the conventionally used Ir/γ-Al2O3 catalyst. The MoNx/γ-Al2O3 catalyst with a loading of about 23 wt% Mo (1.5 monolayers) shows the highest activity for hydrazine decomposition. There is an activation process for the MoNx/γ-Al2O3 catalysts at the early stage of hydrazine decomposition, which is probably due to the reduction of the oxide layer formed in the passivation procedure.

hydrazine decomposition supported molybdenum nitride passivation monopropellant thruster 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U.S. Patent No 4,124,538.Google Scholar
  2. [2]
    R.B. Levy and M. Boudart, Science 181 (1973) 547.Google Scholar
  3. [3]
    L. Volpe and M. Boudart, J. Solid State Chem. 59 (1985) 332.Google Scholar
  4. [4]
    L. Volpe and M. Boudart, J. Solid State Chem. 59 (1985) 348.Google Scholar
  5. [5]
    J.S. Lee, S.T. Oyama and M. Boudart, J. Catal. 106 (1987) 125.Google Scholar
  6. [6]
    J.-G. Choi, R.L. Curl and L.T. Thompson, J. Catal. 146 (1994) 218.Google Scholar
  7. [7]
    C.W. Colling, J.-G. Choi and L.T. Thompson, J. Catal. 160 (1996) 35.Google Scholar
  8. [8]
    R.S. Wise and E.J. Markel, J. Catal. 145 (1994) 335.Google Scholar
  9. [9]
    S. Yang, C. Li, J. Xu and Q. Xin, Chem. Commun. (1997) 1247.Google Scholar
  10. [10]
    L. Volpe and M. Boudart, J. Phys. Chem. 90 (1986) 4874.Google Scholar
  11. [11]
    J.-G. Choi, J. Catal. 182 (1999) 104.Google Scholar
  12. [12]
    G.S. Ranhotra, A.T. Bell and J.A. Reimer, J. Catal. 108 (1987) 40.Google Scholar
  13. [13]
    S.T. Oyama, Catal. Today 15 (1992) 179.Google Scholar
  14. [14]
    Y. Chu, Z. Wei, S. Yang, C. Li, Q. Xin and E. Min, Appl. Catal. A: Gen. 176 (1999) 17.Google Scholar
  15. [15]
    H. Abe and A.T. Bell, Catal. Lett. 18 (1993) 1.Google Scholar
  16. [16]
    C.W. Colling and L.T. Thompson, J. Catal. 146 (1994) 193.Google Scholar
  17. [17]
    E.J. Markel, S.E. Burdick, M.E. Leaphurt II and, K.L. Roberts, J. Catal. 182 (1999) 136.Google Scholar
  18. [18]
    Y. Zhang, Q. Xin, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Appl. Catal. A: Gen. 180 (1999) 237.Google Scholar
  19. [19]
    J.A.J. Rodrigues, G.M. Cruz, G. Bugli, M. Boudart and G. Djéga-Mariadassou, Catal. Lett. 45 (1997) 1.Google Scholar
  20. [20]
    R. Brayner, G. Djéga-Mariadassou, G.M. Cruz and J.A.J. Rodrigues, Catal. Today 57 (2000) 225.Google Scholar
  21. [21]
    Y. Xie and Y. Tang, Advances in Catalysis 37 (1990) 1.Google Scholar
  22. [22]
    S. Yang, C. Li, J. Xu and Q. Xin, J. Phys. Chem. B, 102 (1998) 6986.Google Scholar
  23. [23]
    Z. Wei, P. Grange and B. Delmon, Appl. Surf. Sci., 135 (1998) 107.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Xiaowei Chen
    • 1
  • Tao Zhang
    • 1
  • Liangen Xia
    • 1
  • Tao Li
    • 1
  • Mingyuan Zheng
    • 1
  • Zili Wu
    • 1
  • Xiaodong Wang
    • 1
  • Zhaobin Wei
    • 1
  • Qin Xin
    • 1
  • Can Li
    • 1
  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPR China

Personalised recommendations