Advertisement

Pharmaceutical Research

, Volume 19, Issue 5, pp 689–695 | Cite as

Improved Lung Delivery from a Passive Dry Powder Inhaler Using an Engineered PulmoSphere® Powder

  • Sarma P. Duddu
  • Steven A. Sisk
  • Yulia H. Walter
  • Thomas E. Tarara
  • Kevin R. Trimble
  • Andrew R. Clark
  • Michael A. Eldon
  • Rebecca C. Elton
  • Matthew Pickford
  • Peter H. Hirst
  • Stephen P. Newman
  • Jeffry G. Weers
Article

Abstract

Purpose. To assess the pulmonary deposition and pharmacokinetics of an engineered PulmoSphere® powder relative to standard micronized drug when delivered from passive dry powder inhalers (DPIs).

Methods. Budesonide PulmoSphere (PSbud) powder was manufactured using an emulsion-based spray-drying process. Eight healthy subjects completed 3 treatments in crossover fashion: 370 μg budesonide PulmoSphere inhaled from Eclipse® DPI at target PIF of 25 L·min-1 (PSbud25), and 50 L·min-1 (PSbud50), and 800 μg of pelletized budesonide from Pulmicort® Turbuhaler® at 60 L·min-1(THbud60). PSbud powder was radiolabeled with 99mTc and lung deposition determined scintigraphically. Plasma budesonide concentrations were measured for 12 h after inhalation.

Results. Pulmonary deposition (mean ± sd) of PSbud was 57 ± 7% and 58 ± 8% of the nominal dose at 25 and 50 L·min-1, respectively. Mean peak plasma budesonide levels were 4.7 (PSbud25), 4.0 (PSbud50), and 2.2 ng·ml-1 (THbud60). Median tmax was 5 min after both PSbud inhalations compared to 20 min for Turbuhaler (P < 0.05). Mean AUCs were comparable after all inhalations, 5.1 (PSbud25), 5.9 (PSbud50), and 6.0 (THbud60) ng·h·ml-1. The engineered PSbud powder delivered at both flow rates from the Eclipse® DPI was twice as efficiently deposited as pelletized budesonide delivered at 60 L·min-1 from the Turbuhaler. Intersubject variability was also dramatically decreased for PSbud relative to THbud.

Conclusion. Delivery of an engineered PulmoSphere formulation is more efficient and reproducible than delivery of micronized drug from passive DPIs.

pulmonary drug delivery dry powder inhaler particle engineering spray-drying pharmacoscintigraphy Eclipse® 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. R. Clark. Medical aerosol inhalers: past, present, and future. Aerosol Sci.Tech. 22:374–391 (1995).Google Scholar
  2. 2.
    R. N. Dalby, S. L. Tiano, and A. J. Hickey. Medical devices for the delivery of therapeutic aerosols to the lung. In A. Hickey (ed.), Inhalation Aerosols-Physical and Biological Basis for Therapy. Marcel Dekker, New York, 1996 pp. 441–473Google Scholar
  3. 3.
    L. Borgstrom, E. Bondesson, F. Moren, E. Trofast, and S. P. Newman. Lung deposition of budesonide inhaled via Turbuhaler®: a comparison with terbutaline sulphate in normal subjects. Eur.Resp.J. 7:69–73 (1994).Google Scholar
  4. 4.
    G. R. Pitcairn, J. Lim, A. Hollingsworth, and S. P. Newman. Scintigraphic assessment of drug delivery from the Ultrahaler dry powder inhaler. J.Aerosol Sci. 10:295–306 (1997).Google Scholar
  5. 5.
    G. R. Pitcairn, G. Hooper, X. Luria, X. Rivero, and S. P. Newman. A scintigraphic study to evaluate the deposition patterns of a novel anti-asthma drug inhaled from the Cyclohaler dry powder inhaler. Adv.Drug Deliv.Rev. 26:59–67 (1997).Google Scholar
  6. 6.
    M. Vidgren, M. Silvasti, P. Vidgren, H. Sormunen, K. Laurikainen, and P. Korhonen. Easyhaler multiple dose powder inhaler-practical and effective alternative to the pressurized MDI. Aerosol Sci.Technol. 22:335–345 (1995).Google Scholar
  7. 7.
    S. P. Newman, A. Hollingsworth, and A. R. Clark. Effect of different modes of delivery from a dry powder inhaler. Int.J.Pharm. 102:127–132 (1994).Google Scholar
  8. 8.
    L. A. Dellamary. T. E. Tarara D.J. Smith, C. H. Woelk, A. Adractas, M.L. Costello, H. Gill, and J.G. Weers. Hollow porous particles in metered dose inhalers. Pharm.Res. 17:168–174 (2000).Google Scholar
  9. 9.
    T. E. Tarara, J. G. Weers, and L. A. Dellamary. Engineered powders for inhalation. In R. N. Dalby, P. R. Byron, S. J. Farr (eds.), Respiratory Drug Delivery VII. Interpharm Press, Buffalo Grove, 2000 pp. 413–416.Google Scholar
  10. 10.
    J. Weers. Dispersible powders for inhalation applications. Innov.Pharm Tech. 1:111–116 (2000).Google Scholar
  11. 11.
    A. R. Clark and A. M. Hollingworth. The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers—implications for in vitro testing. J.Aerosol Med. 6:99–110 (1993).Google Scholar
  12. 12.
    G. R. Pitcairn and S. P. Newman. Radiolabelling of dry powder formulations. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery VI. Interpharm Press, Buffalo Grove, 1998 pp. 397–399.Google Scholar
  13. 13.
    G. R. Pitcairn, T. Lankinen, O. P. Seppälä, and S. P. Newman. Pulmonary drug delivery from the Taifun dry powder inhaler is relatively independent of the patient's inspiratory effort. J.Aerosol Med. 13:97–104 (2000).Google Scholar
  14. 14.
    S. Thorsson, T.-B. Edsbäcker, and T.-B. Conradson. Lung deposition of budesonide from Turbuhaler is twice that from a pressurized metered dose inhaler pMDI. Eur.Resp.J. 7:1839–1844 (1994).Google Scholar
  15. 15.
    L. Thorsson, C. Kenyon, S. P. Newman, and L. Borgstrom. Lung deposition of budesonide in asthmatics: a comparison of different formulations. Int.J.Pharm. 168:119–127 (1998).Google Scholar
  16. 16.
    United States Pharmacopeia. USP. Multistage liquid impinger. May-June 19:5463 (1993).Google Scholar
  17. 17.
    L. Borgstrom, S. Newman, A. Weisz, and F. Moren. Pulmonary deposition of inhaled terbutaline: comparison of scanning gamma camera and urinary excretion methods. J.Pharm.Sci. 81:753–755 (1992).Google Scholar
  18. 18.
    G. R. Pitcairn and S. P. Newman. Tissue attenuation corrections in gamma scintigraphy. J.Aerosol Med. 10:187–198 (1997).Google Scholar
  19. 19.
    S. P. Newman, A. R. Clark, N. Talalee, and S. W. Clarke. Pressurised aerosol deposition in the human lung with and without an ‘open’ spacer. Thorax 44:706–710 (1989).Google Scholar
  20. 20.
    S. P. Newman, P. H. Hirst, G. R. Pitcairn, and A. R. Clark. Understanding regional lung deposition in gamma scintigraphy. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery VI, Interpharm Press, Buffalo Grove, 1998 pp. 9–15.Google Scholar
  21. 21.
    L. Asking and B. Olsson. Calibration of the multistage liquid impinger at different flows. Am.Assoc.Aerosol.Res.Fourteenth Annual Meeting (1995) 184.Google Scholar
  22. 22.
    A. Clark and M. Egan. Modeling the deposition of inhaled powdered drug aerosols. J.Aerosol Sci. 25:175–196 (1994).Google Scholar
  23. 23.
    M. Hill, L. Vaughan, and M. Dolovich. Dose targeting for dry powder inhalers. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery V, Interpharm Press, Buffalo Grove, 1996 pp. 197–208.Google Scholar
  24. 24.
    S. Warren, G. Taylor, C. Godfrey, G. Cote, and M. Hill. Gamma scintigraphic evaluation of beclomethasone dipropionate (BDP) from the Spiros dry powder inhaler. J.Aerosol Med. 12:117 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Sarma P. Duddu
    • 1
  • Steven A. Sisk
    • 1
  • Yulia H. Walter
    • 1
  • Thomas E. Tarara
    • 1
  • Kevin R. Trimble
    • 1
  • Andrew R. Clark
    • 1
  • Michael A. Eldon
    • 1
  • Rebecca C. Elton
    • 2
  • Matthew Pickford
    • 2
  • Peter H. Hirst
    • 2
  • Stephen P. Newman
    • 2
  • Jeffry G. Weers
    • 1
  1. 1.Inhale Therapeutic Systems IncSan Carlos
  2. 2.Pharmaceutical Profiles LtdNottinghamUnited Kingdom

Personalised recommendations