Journal of Fluorescence

, Volume 12, Issue 1, pp 57–63 | Cite as

Investigation of Lysozyme-Chitobioside Interactions Using Synchronous Luminescence and Lifetime Measurements

  • Pierre M. Viallet
  • Tuan Vo-Dinh
  • Jean Vigo
  • Jean-Marie Salmon


Beside their ability to disrupt the outer membranes of some microorganisms, lysozymes also experience interactions with chitins or their fluorescent analogs. It has been well established that chitins bind to the cleft of lysozymes and the subsites of the location of the different N-acetylglucosamines that are parts of chitins have been identified. Moreover, it has been well documented that a 1,4-β-bond must be located between subsite D and subsite E to be cleaved. Nevertheless, a better understanding of the biophysical and biochemical processes is needed.

In this paper, pulsed fluorescence was used to further investigate the mechanism by which the binding of fluorescent analogs of chitin (4-methylumbelliferyl chitobiose and 4-methylumbelliferyl chitotriose) to hen egg-white lysozyme results in an increase of their fluorescence intensity. Although such an increase is not observed when these chitobiosides bind to turkey egg-white lysozyme, synchronous fluorescence techniques show that this binding induces a quenching of the native fluorescence of both these proteins.

The findings of this study, associated with previously published cyrstallographic data allow us to suggest that the system lysozyme-chitobioside partitions in two three-dimensional conformational states: an enzymatic active conformation and a storage conformation. These states are separated by an energy barrier, with the storage conformation being more populated than the enzymatic active conformation below 45°C.

Hen and turkey egg-white lysozyme chitobiosides 3D conformational state pulsed fluorescence synchronous fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kuramitsu, K. Ikeda, K. Hamaguchi, H. Fujio, T. Amano, S. Miwa, and T. Nishina (1974) J. Biochem. 76, 671–683.Google Scholar
  2. 2.
    T. Imoto, L. N. Johnson, A. C. T. North, D. C. Phiilips, and J. A. Rupley (1972) in P. Boyer (Ed.) The Enzymes 3rd ed., Vol. 7, Academic Press, New York, pp. 665–868.Google Scholar
  3. 3.
    K. Hamaguchi, K. Rokkaku, M. Funatsu, and K. Hayashi (1960) J. Biochem. 48, 351–357.Google Scholar
  4. 4.
    K. Hayashi, N. Yamasaki, and M. Funatsu (1964) Agric. Biol. Chem. 28, 517–523.Google Scholar
  5. 5.
    T. Imoto and K. Yagishita (1971) Agric. Biol. Chem. 35, 1154–1156.Google Scholar
  6. 6.
    N. Yamasaki, T. Tsujita, and M. Takakuwa (1973) Agric. Biol. Chem. 37, 1507–1508.Google Scholar
  7. 7.
    R. C. Davies, A. Neuberger, and B. M. Wilson (1969) Biochim. Biophys. Acta 178, 294–305.Google Scholar
  8. 8.
    J. Saint-Biancard, P. Chuzel, Y. Mathieu, J. Perrot, and P. Jolies (1970) Biochim. Biophys. Acta 220, 300–306.Google Scholar
  9. 9.
    P. Maurel and P. Douzou (1976) J. Mol. Biol. 102, 253–264.Google Scholar
  10. 10.
    J. A. Rupley (1964) Biochim. Biophys. Acta 83, 245–255.Google Scholar
  11. 11.
    J. A. Rupley and V. Gates (1967) Froc. Natl. Acad. Sci. US. 57, 496–510.Google Scholar
  12. 12.
    S. K. Banerjee, L. Kregar, V. Turk, and J. A. Rupley (1973) J. Biol. Chem. 248, 4786–4792.Google Scholar
  13. 13.
    S. K. Banerjee and J. A. Rupley (1975) J. Biol. Chem. 250, 8267–8274.Google Scholar
  14. 14.
    T. Osawa and Y. Nakazawa (1966) Biochim. Biophys. Acta 130, 56–63.Google Scholar
  15. 15.
    C. S. Tsai, J. Y. Tang, and S. C. Subbarao (1969) Biochem. J. 114, 529–534.Google Scholar
  16. 16.
    T. Rand-Mejr, F.W. Dahlquist, and M. A. Raftery (1969) Biochemistry 8, 4206–4214.Google Scholar
  17. 17.
    F. W. Ballardie, B. Capon, M. W. Cuthbert, and W. M. Dearie (1977) Bioorg. Chem. 6, 483–509.Google Scholar
  18. 18.
    N. Sharon (1967) Proc. Roy. Soc. B167, 402–415.Google Scholar
  19. 19.
    D. M. Chipman, J. J. Pollock, and N. Sharon (1968) J. Biol. Chem. 243, 487–496.Google Scholar
  20. 20.
    J. A. Rupley (1967) Proc. Roy. Soc. B167, 416–428.Google Scholar
  21. 21.
    N. A. Kravchenko (1967) Proc. Roy. Soc. B167, 429–430.Google Scholar
  22. 22.
    J. J. Pollock and N. Sharon (1970) Biochemistry 9, 3913–3925.Google Scholar
  23. 23.
    M. O'Brien and R. R. Colwell (1987) Appl. Environ. Microbiol. 53, 1718–1720.Google Scholar
  24. 24.
    M. Hood (1991) J. Microbiol. Methods 13, 151–160.Google Scholar
  25. 25.
    Y. Yang, and P. L. Hamaguchi (1980) J. Biochem. 87, 1003–1014.Google Scholar
  26. 26.
    S. Karsen and E. Hough (1995) Acta Cryst. D51, 962–978.Google Scholar
  27. 27.
    S. Karsen and E. Hough (1996) Acta Cryst. D52, 115–123.Google Scholar
  28. 28.
    S. Karsen, B. E. Eliassen, L. K. Hansen, R. L. Larsen, B. W. Riize, A. O. Smalas, E. Hough, and B. Grinde (1995) Acta Cryst. D51, 354–367Google Scholar
  29. 29.
    V. B. Vollan, E. Hough, and S. Karlsen (1999) Acta Cryst. D55, 60–66.Google Scholar
  30. 30.
    C. C. F. Blake, L. N. Johnson, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma (1967) Proc. Roy. Soc. 0 B167, 378–388.Google Scholar
  31. 31.
    T. Vo-Dinh (1978) Anal. Chem. 50, 396–401.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Pierre M. Viallet
    • 1
    • 2
  • Tuan Vo-Dinh
    • 2
  • Jean Vigo
    • 1
  • Jean-Marie Salmon
    • 1
  1. 1.Group of Quantitative Microfluorometry, Laboratory of Physicochemical Biology of Integrated SystemsUniversity of PerpignanPerpignanFrance
  2. 2.Advanced Monitoring Development Group, Life Sciences DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations