On the Superlinear Convergence of the Successive Approximations Method

  • E. Cătinaş


The Ostrowski theorem is a classical result which ensures the attraction of all the successive approximations xk+1 = G(x k ) near a fixed point x*. Different conditions [ultimately on the magnitude of G′(x*)] provide lower bounds for the convergence order of the process as a whole. In this paper, we consider only one such sequence and we characterize its high convergence orders in terms of some spectral elements of G′(x*); we obtain that the set of trajectories with high convergence orders is restricted to some affine subspaces, regardless of the nonlinearity of G. We analyze also the stability of the successive approximations under perturbation assumptions.

Successive approximations convergence orders inexact Newton iterates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ORTEGA, J. M., and RHEINBOLDT, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, NY, 1970.Google Scholar
  2. 2.
    POTRA, F. A., On Q-Order and R-Order of Convergence, Journal of Optimization Theory and Applications, Vol. 63, pp. 415-431, 1989.Google Scholar
  3. 3.
    RHEINBOLDT, W. C., Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia, Pennsylvania, 1998.Google Scholar
  4. 4.
    POTRA, F.A., Q-Superlinear Convergence of the Iterates in Primal-Dual Interior-Point Methods, Mathematical Programming (to appear).Google Scholar
  5. 5.
    OSTROWSKI, A.M., Solution of Equations and Systems of Equations, Academic Press, New York, NY, 1966.Google Scholar
  6. 6.
    HOUSEHOLDER, A. S., The Theory of Matrices in Numerical Analysis, Dover, New York, NY, 1974.Google Scholar
  7. 7.
    ARGYROS, I., and SZIDAROVSZKY, F., The Theory and Applications of Iteration Methods, CRC Press, Boca Raton, Florida, 1993.Google Scholar
  8. 8.
    ARGYROS, I., On the Convergence of the Modified Contractions, Journal of Computational and Applied Mathematics, Vol. 55, pp. 183-189, 1994.Google Scholar
  9. 9.
    BROWN, P. N., A Local Convergence Theory for Combined Inexact-Newton/Finite-Difference Projection Methods, SIAM Journal on Numerical Analysis, Vol. 24, pp. 407-434, 1987.Google Scholar
  10. 10.
    BROWN, P. N., and SAAD, Y., Convergence Theory of Nonlinear Newton-Krylov Algorithms, SIAM Journal on Optimization, Vol. 4, pp. 297-330, 1994.Google Scholar
  11. 11.
    CăTINAş, E., Newton and Newton-Krylov Methods for Solving Nonlinear Systems inn, PhD Thesis, Babeş-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania, 1999.Google Scholar
  12. 12.
    CăTINAş, E., On the High Convergence Orders of the Newton-GM BACK Methods, Revue d'Analyse Numérique et de Théorie de l'Approximation, Vol. 28, pp. 125-132, 1999.Google Scholar
  13. 13.
    CăTINAş, E., A Note on the Quadratic Convergence of the Inexact Newton Methods, Revue d'Analyse Numérique et de Théorie de l'Approximation, Vol. 29, pp. 129-134, 2000.Google Scholar
  14. 14.
    CăTINAş, E., Inexact Perturbed Newton Methods and Applications to a Class of Krylov Solvers, Journal of Optimization Theory and Applications, Vol. 108, pp. 543-570, 2001.Google Scholar
  15. 15.
    CăTINAş, E., The Inexact, Inexact Perturbed, and Quasi-Newton Methods are Equivalent Models, Mathematics of Computation (to appear).Google Scholar
  16. 16.
    DEMBO, R. S., EISENSTAT, S. C., and STEIHAUG, T., Inexact Newton Methods, SIAM Journal on Numerical Analysis, Vol. 19, pp. 400-408, 1982.Google Scholar
  17. 17.
    DENNIS, J. E., JR., and MORÉ, J. J., A Characterization of Superlinear Convergence and Its Application to Quasi-Newton Methods, Mathematics of Computation, Vol. 28, pp. 549-560, 1974.Google Scholar
  18. 18.
    DENNIS, J. E., JR., and MORÉ, J. J., Quasi-Newton Methods, Motivation and Theory, SIAM Review, Vol. 19, pp. 46-89, 1977.Google Scholar
  19. 19.
    DENNIS, J. E., JR., and SCHNABEL, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.Google Scholar
  20. 20.
    DEUFLHARD, P., and POTRA, F. A., Asymptotic Mesh Independence of Newton-Galerkin Methods via a Refined Mysovskii Theorem, SIAM Journal on Numerical Analysis, Vol. 29, pp. 1395-1412, 1992.Google Scholar
  21. 21.
    EISENSTAT, S. C., and WALKER, H. F., Globally Convergent Inexact Newton Methods, SIAM Journal on Optimization, Vol. 4, pp. 393-422, 1994.Google Scholar
  22. 22.
    EISENSTAT, S. C., and WALKER, H. F., Choosing the Forcing Terms in an Inexact Newton Method, SIAM Journal on Scientific Computing, Vol. 17, pp. 16-32, 1996.Google Scholar
  23. 23.
    ISTRăţESCU, V. I., Introduction to the Fixed-Point Theory, Editura Academiei RSR, Bucharest, Romania, 1973 (in Romanian).Google Scholar
  24. 24.
    KELLEY, C. T., Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, Pennsylvania, 1995.Google Scholar
  25. 25.
    KELLEY, C. T., and SACHS, E.W., Truncated Newton Methods for Optimization with Inaccurate Functions and Gradients, Report CRSC-TR-99-20, Center for Research in Scientific Computation, North Carolina State University, 1999.Google Scholar
  26. 26.
    KERKHOVEN, T., and SAAD, Y., On Acceleration Methods for Coupled Nonlinear Elliptic Systems, Numerische Mathematik, Vol. 60, pp. 525-548, 1992.Google Scholar
  27. 27.
    MăRUşTER, şT., Quasi-Nonexpansivity and Two Classical Methods for Solving Nonlinear Equations, Proceedings of the American Mathematical Society, Vol. 62, pp. 119-123, 1977.Google Scholar
  28. 28.
    MăRUşTER, şT., Numerical Methods for Solving Nonlinear Equations, Editura Tehnică, Bucharest, Romania, 1981 (in Romanian).Google Scholar
  29. 29.
    PăVăLOIU, I., Introduction to the Theory of Approximating the Solutions of Equations, Editura Dacia, Cluj-Napoca, Romania, 1976 (in Romanian).Google Scholar
  30. 30.
    PăVăLOIU, I., The Solving of Nonlinear Equations by Interpolation, Editura Dacia, Cluj-Napoca, Romania, 1981 (in Romanian).Google Scholar
  31. 31.
    POTRA, F. A., On the Numerical Stability of a Class of Iteratiûe Processes, Itinerant Seminar of Functional Equations, Approximation and Convexity, Timişoara, Romania, pp. 51-54, 1980 (in Romanian).Google Scholar
  32. 32.
    POTRA, F. A., On a Class of Iterative Procedures for Solving Nonlinear Equations in Banach Spaces, Computational Mathematics, Banach Center Publications, PWN-Polish Scientific Publishers, Warsaw, Poland, Vol. 13, pp. 607-621, 1984.Google Scholar
  33. 33.
    POTRA, F. A., and PTÁK, V., Sharp Error Bounds for Newton's Process, Numerische Mathematik, Vol. 34, pp. 63-72, 1980.Google Scholar
  34. 34.
    POTRA, F. A., and PTÁK, V., Nondiscrete Induction and Iterative Processes, Pitman, London, England, 1984.Google Scholar
  35. 35.
    WALKER, H. F., An Approach to Continuation Using Krylov Subspace Methods, Computational Science in the 21st Century, Edited by M. O. Bristeau, G. Etgen, W. Fitzgibbon, J. L. Lions, J. Periaux, and M. F. Wheeler, John Wiley and Sons, New York, NY, pp. 72-82, 1997.Google Scholar
  36. 36.
    WILKINSON, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.Google Scholar
  37. 37.
    ZEIDLER, E., Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems, Springer Verlag, New York, NY, 1986.Google Scholar
  38. 38.
    GLAZMAN, I. and LIUBITCH, Y., Analyse Linéaire dans les Espaces de Dimensions Finies, Manuel en Problèmes, Mir, Moscow, Russia, 1972.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • E. Cătinaş
    • 1
  1. 1.Romanian Academy of SciencesT. Popoviciu Institute of Numerical AnalysisCluj-NapocaRomania

Personalised recommendations