Advertisement

Journal of Fluorescence

, Volume 12, Issue 1, pp 19–24 | Cite as

Study of Preferential Solvation in Binary Mixtures by Means of Frequency-Domain Fluorescence Spectroscopy

  • N. Kh. Petrov
  • D. E. Markov
  • M. N. Gulakov
  • M. V. Alfimov
  • H. Staerk
Article

Abstract

The preferential solvation of 8-N,N-(dimethylamino)-11H-indeno[2,1-a]pyrene, Py(S)DMA, in its transient charge transfer (CT) state in binary solvents such as toluene/DMSO liquid mixtures was studied by means of frequency-domain fluorometry. The data obtained were considered within the following kinetic scheme: the preferential solvation was described by the system of consecutive reversible reactions of which each step is associated with the absorption of one DMSO molecule in the first solvation shell of the fluoresent Py(S)DMA dipolar CT molecule. The rate constants of the first two reversible elementary processes (i.e., the decay of solvation complexes of Py(S)DMA with one and two polar molecules, k−1 = 1.1 109 s−1 and k−2 = 1.4 109 s−1) were determined.

Preferential solvation frequency-domain fluorometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. Reichardt (1988) Solvents and Solvent Effects in Organic Chemistry, 2nd ed., Verlag Chemie, Weinheim; C. Reichardt (1994), Chem. Rev. 94, 2319–2358.Google Scholar
  2. 2.
    (a) N. K. Petrov, A. Wiessner, T. Fiebig, and H. Staerk (1995) Chem. Phys. Letters 241, 127–132; (b) N. K. Petrov, A. Wiessner, and H. Staerk (1998) J. Chem. Phys. 108, 2326- 2330; (c) N. K. Petrov, A. Wiessner, and H. Staerk (2001) Chem. Phys. Lett.,submitted for publication.Google Scholar
  3. 3.
    (a) F. Cichos, A. Willert, U. Rempel, and C. von Borczyskowski (1997), J. Phys. Chem. A, 101, 8179–8179; (b) F. Cichos, R. Brown, U. Rempel, and C. von Borczyskowski (1999) J. Phys. Chem. A 103, 2506- 2512.Google Scholar
  4. 4.
    J. N. Demas (1983) Excited State LifetimeMeasurements, Academic the separation of the third and second states in a 3.2 Press, New York, pp. 50–53.Google Scholar
  5. 5.
    E. Gratton, J. R. Alcala, B. Barbiery (1991) in W. R. G. Baeyens, D. de Keukeleire, and K. Korkidis (Eds.) in Luminescence Technique in Chemical and Biochemical Analysis, Marcel Dekker, Inc., New York, pp. 47–72.Google Scholar
  6. 6.
    (a) J. Lakowicz and A. Balter (1982) Biophys. Chem. 16, 99–116; (b) J. R. Lakowicz (1983) Principles of Fluorescence Spectroscopy, Plenum, New York. (c) J. R. Lakowicz, I. Gryczynski, G. Laczko, Joshi, and M. L. Johnson (1991) in W. R. G. Baeyens, D. de Keukeleire, and K. Korkidis (Eds.), Luminescence Technique in Chemical and Biochemical Analysis, Marcel Dekker, Inc., New York, pp. 141- 177.Google Scholar
  7. 7.
    K. Nishiyama and T. Okada (1998) J. Phys. Chem. A 102, 9729–9733.Google Scholar
  8. 8.
    E. L. Lippert (1975) in J. B. Birks (Ed.) Organic Molecular Photophysics, Vol. 2, John Wiley, New York, pp. 1–29.Google Scholar
  9. 9.
    T. V. Veselova, L. A. Limareva, A. C. Cherkasov, and V. I. Shirokov (1965) Optics Spectrosc. 19, 78–85.Google Scholar
  10. 10.
    A. Morita (1980) J. Chem. Phys. 73, 230–234.Google Scholar
  11. 11.
    G. Weber (1977) J. Chem. Phys. 66, 4081–4091.Google Scholar
  12. 12.
    A. J. Gordon and F. A. Ford (1972) The Chemist's Companion, Wiley, New York, pp. 4–16.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • N. Kh. Petrov
    • 1
  • D. E. Markov
    • 1
  • M. N. Gulakov
    • 1
  • M. V. Alfimov
    • 1
  • H. Staerk
    • 2
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia
  2. 2.Max-Planck Institut für biophysikalische ChemieAbteilung Spektroskopie und Photochemische Kinetik, Am FassbergGöttingenGermany

Personalised recommendations