Algebra and Logic

, Volume 41, Issue 2, pp 74–80 | Cite as

Recognizing Groups G23 n ) by Their Element Orders

  • A. V. Vasilyev
Article

Abstract

It is proved that a finite group that is isomorphic to a simple non-Abelian group G=G2(3 n ) is, up to isomorphism, recognized by a set ω(G) of its element orders, that is, H ≃ G if ω(H)=ω(G) for some finite group H.

finite group, simple non-Abelian group, recognizability of groups by their element orders. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. D. Mazurov, “The set of orders of elements in a finite group,” Algebra Logika, 33 No. 1, 81-89 (1994).Google Scholar
  2. 2.
    W. J. Shi, “A characteristic property of A 5,” J. Southwest-China Teach. Univ., Ser. B. No. 3, 11-14 (1986).Google Scholar
  3. 3.
    W. J. Shi, “A characteristic property of PSL 2(7),” J. Austr. Math. Soc., Ser. A, 36 No. 3, 354-356 (1984).Google Scholar
  4. 4.
    W. J. Shi, “A characterization of some projective special linear groups,” J. Southwest-China Teach. Univ., Ser. B. No. 2, 2-10 (1985).Google Scholar
  5. 5.
    W. J. Shi, “A characteristic property of J 1 and PSL 2 (2 n ),Adv. Math. Beijing, 16 No. 4, 397-401 (1987).Google Scholar
  6. 6.
    R. Brandl and W. J. Shi, “The characterization of PSL(2, q) by its element orders,” J. Alg., 163, No. 1, 109-114 (1994).Google Scholar
  7. 7.
    V. D. Mazurov, M. C. Xu, and H. P. Cao, “Recognition of finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra Logika, 39 No. 5, 567-585 (2000).Google Scholar
  8. 8.
    W. J. Shi, “A characterization of Suzuki simple groups,” Proc. Am. Math. Soc., 114 No. 3, 589-591 (1992).Google Scholar
  9. 9.
    R. Brandl and W. J. Shi, “A characterization of finite simple groups with Abelian Sylow 2-subgroups,” Ric. Mat., 42 No. 1, 193-198 (1993).Google Scholar
  10. 10.
    H. W. Deng and W. J. Shi, “The characterization of Ree groups 2 F 4(q) by their element orders,” J. Alg., 217 No. 1, 180-187 (1999).Google Scholar
  11. 11.
    A. S. Kondratiev and V. D. Mazurov, “Recognition of alternating groups of prime degree from their element orders,” Sib. Mat. Zh., 41 No. 2, 360-371 (2000).Google Scholar
  12. 12.
    A. V. Zavarnitsin, “Recognition by the element order set of alternating groups of degree r + 1 and r + 2 for prime r,” Preprint No. 47, Institute of Discrete Mathematics and Informatics, Novosibirsk (2000).Google Scholar
  13. 13.
    S. Lipschutz and W. J. Shi, “Finite groups whose element orders do not exceed twenty,” Progr. Nat. Sc., 10 No. 1, 11-21 (2000).Google Scholar
  14. 14.
    J. S. Williams, “Prime graph components of finite groups,” J. Alg., 69 No. 2, 487-513 (1981).Google Scholar
  15. 15.
    A. S. Kondratiev, “On prime graph components for finite simple groups,” Mat. Sb., 180 No. 6, 787-797 (1989).Google Scholar
  16. 16.
    V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements,” Algebra Logika, 37 No. 6, 651-666 (1998).Google Scholar
  17. 17.
    R. Steinberg, Lectures on Chevalley Groups, Yale University (1967).Google Scholar
  18. 18.
    R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., 28, Wiley, London (1972).Google Scholar
  19. 19.
    A. V. Vasilyev, “Minimal permutation representations of finite simple exceptional groups of types G 2 and F 4,” Algebra Logika, 35 No. 6, 663-684 (1996).Google Scholar
  20. 20.
    Seminar on Algebraic Groups and Related Finite Groups, Springer, Berlin (1970).Google Scholar
  21. 21.
    J. G. Thompson, “Normal p-complements for finite groups,” Math. Z., 72 No. 2, 332-354 (1960).Google Scholar
  22. 22.
    J. Conway, R. Curtis, S. Norton, et al., Atlas of Finite Groups, Clarendon, Oxford (1985).Google Scholar
  23. 23.
    A. V. Zavarnitsin and V. D. Mazurov, “Element orders in coverings of the symmetric and alternating groups,” Algebra Logika, 38 No. 3, 296-315 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. V. Vasilyev

There are no affiliations available

Personalised recommendations