Advertisement

Journal of Chemical Ecology

, Volume 28, Issue 4, pp 819–834 | Cite as

Potential Use of Chemical Cues for Colony-Mate Recognition in the Big Brown Bat, Eptesicus fuscus

  • Johanna Bloss
  • Terry E. Acree
  • Janelle M. Bloss
  • Wendy R. Hood
  • Thomas H. KunzEmail author
Article

Abstract

Bats should benefit from recognition of their roost-mates when colonies form stable social units that persist over time. We used Y-maze experiments and gas chromatography–olfactometry (GC-O) to evaluate whether female big brown bats Eptesicus fuscus (Chiroptera: Vespertilionidae) use chemical cues to distinguish among conspecifics. In dual-choice Y-maze experiments, females chose the scent of another female from their own roost over a conspecific female from a different roost in a majority of trials. Analysis of total body odors using GC-O suggests that individuals from a given colony may share a more common odor signature with roost-mates than with non-roost-mate conspecifics. Using four principle components derived from 15 odor variables, discriminant function analysis correctly assigned most individuals to the correct colony.

Big brown bat Chiroptera colony recognition Eptesicus fuscus female philopatry gas chromatography–olfactometry olfaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Acree, T. E.1997. GC/Olfactometry: GC with a sense of smell. Anal. Chem. 69:170A–176A.Google Scholar
  2. Acree, T. E., and Arn, H.1997. The Flavornet. http/www.nysaes.cornell.edu/flavornetGoogle Scholar
  3. Acree, T. E., and Bloss, J.M.1996. Flavour chemistry and human chemical ecology, pp. 311–318, inA. J. Taylor and D. S. Mottram (eds.). Flavour Science: Recent Developments. The Royal Society of Chemistry, London.Google Scholar
  4. Acree, T. E., Lavin, E. H., Nishida, R., and Watanabe, S.1990. O-Amino acetophenone the foxy smelling component of labruscana grapes, pp. 49–52, inY. Bessiere and A. F. Thomas (eds.). Flavor Science and Technology. 6th Weurman Symposium. Geneva, Switzerland.Google Scholar
  5. Agosta, W. C.1992. Chemical Communication: The Language of Pheromones. Scientific American Library, New York.Google Scholar
  6. Albone, E. S.1984. Mammalian Semiochemistry. John Wiley, New York.Google Scholar
  7. Balcombe, J. P.1990. Vocal recognition of pups by mother Mexican free-tailed bats, Tadarida brasiliensis mexicana. Anim. Behav. 39:960–966.Google Scholar
  8. Balcombe, J. P., and McCracken, G. F.1992. Vocal recognition in Mexican free-tailed bats: Do pups recognize mothers? Anim. Behav. 43:79–87.Google Scholar
  9. Bartelt, R. J., and Wicklow, D. T.1999. Volatiles from Fusarium verticillioides(Sacc.) Nirenb. and their attractiveness to nitidulid beetles. J. Agric. Food Chem. 47:2447–2454.Google Scholar
  10. Bloss, J.1999. Olfaction and the use of chemical signals in bats. Acta Chiropterol.1:31–45.Google Scholar
  11. Bonaccorso, F. J., Arends, A., Genoud, M., Cantoni, D., and Morton, T.1992. Thermal ecology of moustached and ghost-faced bats (Mormoopidae) in Venezuela. J. Mammal. 73:365–378.Google Scholar
  12. Bouchard, S.1998. Sex discrimination and roostmate recognition using olfactory cues in two African free-tailed bats, Mops condylurusand Chaerephon pumilus(Chiroptera: Molossidae). Bat Res. News39:157.Google Scholar
  13. Bredie, W. L. P., Mottram, D. S., and Guy, R. C. E.1998. Aroma volatiles generated during extrusion cooking of maize flour. J. Agric. Food Chem. 46:1479–1487.Google Scholar
  14. Brigham, R. M., and Fenton, M. B.1986. The influence of roost closure on the roosting and foraging behaviour of Eptesicus fuscus(Chiroptera: Vespertilionidae). Can. J. Zool. 64:1128–1133.Google Scholar
  15. Brooke, A. P., and Decker, D.1993. Scent marking and the use of odorous secretions by the fishing bat, Notilio leporinus. Bat Res. News34:103.Google Scholar
  16. Brooke, A. P., and Decker, D. M.1996. Lipid compounds in secretions of fishing bat, Noctilio leporinus(Chiroptera: Noctilionidae). J. Chem. Ecol. 22:1411–1428.Google Scholar
  17. Burger, B. V., Petersen, W. G. B., and Tribe, G. D.1995. Semiochemicals of the Scarabaeine.4. Identification of an attractant for the dung beetle Pachylomerus femoralisin the abdominal secretion of the dung beetle Kheper lamarcki. Z. Naturforsch. 50:675–680.Google Scholar
  18. Buttery, R. G., and Ling, L. C.1998. Additional studies on flavor components of corn tortilla chips. J. Agric. Food Chem. 46:2764–2769.Google Scholar
  19. Chapman, J.W., Knapp, J. J., Howse, P.W., and Goulson, D.1998. An evaluation of (Z)-9-tricosene and food odours for attracting house flies, Musca domestica, to baited targets in deep-pit poultry units. Entomol. Exp. Appl. 89:183–192.Google Scholar
  20. Clark, L.1998. Bird repellents: Interaction of chemical agents in mixtures. Physiol. Behav. 64:689–695.Google Scholar
  21. Cordova-Yamauchi, L., Gianoli, E., Quiroz, A., and Niemeyer, H. M.1998. The Argentine ant, Linepithema humile(Hymenoptera: Formicidae: Dolichoderinae) is sensitive to semiochemicals involved in the spacing behaviour in the bird cherry-oat aphid Rhopalosiphum padi(Sternorrhyncha: Aphididae). Eur. J. Entomol. 95:501–508.Google Scholar
  22. Dapson, R. W., Studier, E. H., Buckingham, M. J., and Studier, A. L.1977. Histochemistry of odoriferous secretions from integumentary glands in three species of bats. J. Mammal. 58: 531–535.Google Scholar
  23. De Fanis, E., and Jones, G.1995a. Post-natal growth, mother-infant interactions and development of vocalizations in the vespertilionid bat Plecotus auritus. J. Zool. London235:85–97.Google Scholar
  24. De Fanis, E., and Jones, G.1995b. The role of odour in the discrimination of conspecifics by pipistrelle bats. Anim. Behav. 49:835–839. 832 BLOSS ET AL.Google Scholar
  25. De Fanis, E., and Jones, G.1996. Allomaternal care and recognition between mothers and young in pipistrelle bats (Pipistrellus pipistrellus). J. Zool. London240:781–787.Google Scholar
  26. Do Nascimento, R. R., Billen, J., Sant'ana, A. E. G., Morgan, E. D., and Harada, A. Y.1998. Pygidial gland of Azteca nr. bicolorand Azteca chartifex: Morphology and chemical identification of volatile components. J. Chem. Ecol. 24:1629–1637.Google Scholar
  27. Du, Y. J., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M.1998. Identification of semiochemicals released during aphid feeding that attract the parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1368.Google Scholar
  28. Dusenbery, D. B.1992. Sensory Ecology: How Organisms Acquire and Respond to Information. W. H. Freeman and Company, New York.Google Scholar
  29. Eggert, F., Holler, C., Luszyk, D., Muller-Ruchholtz, W., and Ferstl, R.1996. MHCassociated and MHC-independent urinary chemosignals in mice. Physiol. Behav. 59:57–62.Google Scholar
  30. Eggert, F., Muller-Ruchholtz, W., and Ferstl, R.1998. Olfactory cues associated with the major histocompatibility complex. Genetica104:191–197.Google Scholar
  31. Eisenberg, J. F., and Kleiman, D. G.1972. Olfactory communication in mammals. Ann. Rev. Ecol. Syst.3:1–32.Google Scholar
  32. Esser, K.-H., and Schmidt, U.1989. Mother–infant communication in the lesser spear-nosed bat Phyllostomus discolor(Chiroptera: Phyllostomidae)—evidence for acoustic learning. Ethology82:156–168.Google Scholar
  33. Ferkin, M. H., and Johnston, R. E.1995. Effects of pregnancy, lactation and postpartum oestrus on odour signals and the attraction to odours in female meadow voles, Microtus pennsylvanicus. Anim. Behav.49:1211–1217.Google Scholar
  34. French, B., and Lollar, A.1998. Observations on the reproductive behavior of captive Tadarida brasiliensis mexicana(Chiroptera: Molossidae). Southwest. Nat. 43:484–490.Google Scholar
  35. Glusman, G., Yanai, I., Rubin, I., and Lancet, D.2001. The complete human olfactory subgenome. Genome Res. 5:685–702.Google Scholar
  36. Gonzales, W. L., Fuentes-Contreras, E., and Niemeyer, H. M.1999. Semiochemicals associated to spacing behaviour of the bird cherry-oat aphid Rhopalosiphum padiL. (Mem., Aphididae) do not affect the olfactometric behaviour of the cereal aphid parasitoid Aphis rhopalosiphiDe Stephani-Perez (Hym., Braconidae). J. Appl. Entomol. 123:413–415.Google Scholar
  37. Gustin, M. K., and McCracken, G. F.1987. Scent recognition between females and pups in the bat Tadarida brasiliensis mexicana. Anim. Behav. 35:13–19.Google Scholar
  38. Groot, A. T., Timmer, R., Gort, G., Lelyveld, G. P., Drijfhout, F. P., Van Beek, T. A., and Visser, J. H.1999. Sex-related perception of insect and plant volatiles in Lygocoris pabulinus. J. Chem. Ecol.25:2357–2371.Google Scholar
  39. Haffner, M.1995. The possibilities of scent marking in the mouse-eared bat Myotis myotis(Borkhausen, 1797) and the noctule bat Nyctalus noctula(Schreber, 1774) (Mammalia, Chiroptera). Z. Saeugetierkd. 60:112–118.Google Scholar
  40. Halpin, Z. T.1986. Individual odors among mammals: Origins and functions, pp. 39–70, inJ. S. Rosenblatt, C. Beer, M. Busnel, and P. J. B. Slater (eds.). Advances in the Study of Behavior, Vol. 16. Academic Press, New York.Google Scholar
  41. Herderich, M., Costello, P. J., Grbin, P. R., and Henschke, P. A.1995. Occurrence of 2-acetyl-1-pyrroline in mousy wines. Nat. Prod. Lett.7:129–132.Google Scholar
  42. Herreid, C. F., II. 1967. Temperature regulation, temperature preference and tolerance, and metabolism of young and adult free-tailed bats. Physiol. Zool. 40:1–22.Google Scholar
  43. HÖller, P. von, and Schmidt, U.1993. Olfactory communication in the lesser spear-nosed bat, Phyllostomus discolor(Chiroptera: Phyllostomidae). Z. Saeugetierkd.58:257–265.Google Scholar
  44. Johnson, R. A., and Wichern, D. W.1992. Applied Multivariate Statistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  45. Jones, G., Hughes, P. M., and Rayner, J.M.V.1991. The development of vocalizations in Pipistrellus pipistrellus(Chiroptera: Vespertilionidae) during post-natal growth and the maintenance of individual vocal signatures. J. Zool. London225:71–84.Google Scholar
  46. Jonsson, M., and Anderson, P.1999. Electrophysiological response to herbivore-induced host plant volatiles in the moth Spodoptera littoralis. Physiol. Entomol. 24:377–385.Google Scholar
  47. Kunz, T. H.1982. Roosting ecology of bats, pp. 1–55, inT. H. Kunz (ed.). Ecology of Bats. Plenum Press, New York.Google Scholar
  48. Kunz, T. H., and Hood, W. R.2000. Parental care and postnatal growth in the Chiroptera, pp. 415–468, inE. G. Creighton and P. H. Krutzsch (ed.). Reproductive Biology of Bats. Academic Press, San Francisco, California.Google Scholar
  49. Kunz, T. H., and Kurta, A.1988. Capture methods and holding devices, pp. 1–29, inT. H. Kunz (ed.). Ecological and Behavioral Methods for the Study of Bats. Smithsonian Institution Press, Washington, D.C.Google Scholar
  50. Kurta, A.1999. Big brown bat, Eptesicus fuscus, pp. 115–117, inD. E. Wilson and S. Ruff (eds.). The Smithsonian Book of North American Mammals. Smithsonian Institution Press, Washington, D.C.Google Scholar
  51. Kurta, A., and Baker, R. H.1990. Eptesicus fuscus. Mammal. Species356:1–10.Google Scholar
  52. Lawless, H.T., and Heymann, H.1999. Sensory Evaluation of Foods. Aspen Publishers, Gaithersburg, Pennsylvania.Google Scholar
  53. Lewis, S.1995. Roost fidelity of bats: A review. J. Mammal. 76:481–496.Google Scholar
  54. Lis-Balchin, M., and Hart, S.1999. Studies on the mode of action of the essential oil lavender (Lavandula angustifoliaP. Miller). Phytother. Res. 13:540–542.Google Scholar
  55. Loughry, W. J., and McCracken, G. F.1991. Factors influencing female-pup scent recognition in Mexican free-tailed bats. J. Mammal. 72:624–626.Google Scholar
  56. McCracken, G. F., and G. S. Wilkinson. 2000. Bat mating systems, pp. 321–362, inE. G. Creighton and P. H. Krutzsch (eds.). Reproductive Biology of Bats. Academic Press, San Francisco, California.Google Scholar
  57. Meagher, R. L., and Mitchell, E. R.1998. Phenylacetaldehyde enhances upwind flight of male fall armyworm (Lepidopetera: Noctuidae) to its sex pheromone. Fla. Entomol. 81:556–559.Google Scholar
  58. Meagher, R. L., and Mitchell, E. R.1999. Nontarget Hymenoptera collected in pheromone-and synthetic floral volatile-baited traps. Environ. Entomol. 28:367–371.Google Scholar
  59. Nolte, D. L., Farley, J. P., Campbell, D. L., Epple, G. M., and Mason, J. R.1993. Potential repellents to prevent mountain beaver damage. Crop Prot. 12:624–626.Google Scholar
  60. Nout, M. J. R., and Bartelt, R. J.1998. Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. J. Chem. Ecol. 24:1217–1239.Google Scholar
  61. Omura, H., Honda, K., and Hayashi, N.1999a. Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pierus rapae, to rape flowers. J. Chem. Ecol. 25:1895–1906.Google Scholar
  62. Omura, H., Honda, K., Nakagawa, A., and Hayashi, N.1999b. The role of floral scent of the cherry tree, Prunus yedoensis, in the foraging behavior of Leuhdorfia japonica(Lepidotera: Papilionidae). Appl. Entomol. Zool. 34:309–313.Google Scholar
  63. Osterkamp, J., Wahl, U., Schmalfuss, G., and Haas, W.1999. Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. J. Comp. Physiol. A185:59–67.Google Scholar
  64. Palisot de Beauvois, A. M. F. J.1796. Catalogue raisonne du muséum, de Mr. C. W. Peale. Parent, Philadelphia, Pennsylvania.Google Scholar
  65. Park, K. C., and Cork, A.1999. Electrophysiological responses of antennal receptor neurons in female Australian sheep blowflies, Lucilia cuprina, to host odours. J. Insect Physiol. 45:85–91.Google Scholar
  66. Penn, D., and Potts, W.1998. How do major histocompatability genes influence odor and mating preferences? Adv. Immunol. 69:411–435. 834 BLOSS ET AL.Google Scholar
  67. Penn, D. J., and Potts, W. K.1999. The evolution of mating preferences and major histocompatibility complex genes. Am. Nat. 153:145–164.Google Scholar
  68. Pollien, P., Fay, L. B., Baumgartner, M., and Chaintreau, A.1999. First attempt of odorant quantitation using gas chromatography-olfactometry. Anal. Chem. 71:5391–5397.Google Scholar
  69. Quay, W. B.1970. Integument and derivatives, pp. 1–56, inW. A. Wimsatt (ed.). Biology of Bats, Vol. II. Academic Press, New York.Google Scholar
  70. Raguso, R. A., and Light, D. M.1998. Electroantennogram responses of male Sphinx pereleganshawkmoths to floral and “green-leaf volatiles.” Entomol. Exp. Appl. 86:287–293.Google Scholar
  71. Raguso, R. A., Light, D. M., and Pickersky, E.1996. Electroantennogram responses of Hyles lineata(Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri(Onagraceae) and other moth-pollinated flowers. J. Chem. Ecol. 22:1735–1766.Google Scholar
  72. Rose, U. S. R., Lewis, W. J., and Tumlinson, J. H.1998. Specificity of systematically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol.24:303–319.Google Scholar
  73. Salamon, M., and Davies, N. W.1998. Identification and variation of volatile compounds in sternal gland secretions of male koalas (Phascolarctos cinereus). J. Chem. Ecol. 24:1659–1676.Google Scholar
  74. Sant'ana, J., Da Silva, R. F. P., and Dickens, J. C.1999. Olfactory reception of conspecific aggregation pheromone and plant odors by nymphs of the predator, Podisus maculiventris. J. Chem. Ecol. 25:1813–1826.Google Scholar
  75. SAS Institute Inc. 1990. SAS/STAT User' Guide, Version 6, 4th ed. SAS Institute Inc., Cary, North Carolina.Google Scholar
  76. Schellinck, H. M., Slotnick, B. M., and Brown, R. E.1997. Odors of individuality originating from the major histocompatibility complex are masked by diet cues in the urine of rats. Anim. Learn. Behav. 25:193–199.Google Scholar
  77. Schmidt, U.1988. Orientation and sensory functions in Desmodus rotundus, pp. 143–166, inA. M. Greenhall and U. Schmidt (eds.). Natural History of Vampire Bats. CRC Press, Boca Raton, Florida.Google Scholar
  78. Studier, E. H., and Lavoie, K. H.1984. Microbial involvement in scent production in noctilionid bats. J. Mammal. 65:711–714.Google Scholar
  79. Takken, W.1999. Chemical signals affecting mosquito behaviour. Invertebr. Reprod. Dev. 36: 67–71.Google Scholar
  80. Thomson, C. E., Fenton, M. B., and Barclay, R. M. R.1985. The role of infant isolation calls in mother-infant reunions in the little brown bat, Myotis lucifugus(Chiroptera: Vespertilionidae). Can. J. Zool. 63:1982–1988.Google Scholar
  81. Trune, D. R., and Slobodchikoff, C. N.1976. Social effects of roosting on the metabolism of the pallid bat (Antrozous pallidus). J. Mammal. 57:656–663.Google Scholar
  82. Watkins, L. C., and Shump, K. A.1981. Behavior of the evening bat, Nycticeius humeralis, at a nursery roost. Am. Midl. Nat. 105:258–268.Google Scholar
  83. Whitaker, J. O., Jr.1995. Food of the big brown bat Eptesicus fuscusfrom maternity colonies in Indiana and Illinois. Am. Midl. Nat. 134:346–360.Google Scholar
  84. YlÖnen, H.1994. Vole cycles and anti-predatory behaviour. TREE9:426–430.Google Scholar
  85. Zar, J. H.1984. Biostatistical Analysis, 2nd ed. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  86. Zhu, J.W., Cosse, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C.1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculataand the green lacewing, Chrysoperia carneato semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.Google Scholar
  87. Zilkowski, B. W., Bartelt, R. J., Blumberg, D., James D. G., and Weaver, D. K.1999. Identification of host-related volatiles attractive to pineapple beetle Carpophilus humeralis. J. Chem. Ecol. 25:229–252.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Johanna Bloss
    • 1
  • Terry E. Acree
    • 2
  • Janelle M. Bloss
    • 3
  • Wendy R. Hood
    • 1
  • Thomas H. Kunz
    • 1
    Email author
  1. 1.Department of BiologyBoston UniversityBoston
  2. 2.Department of Food Science and TechnologyCornell University—GenevaGeneva
  3. 3.Smith CollegeNorthampton

Personalised recommendations