Advertisement

Applied Categorical Structures

, Volume 10, Issue 3, pp 257–266 | Cite as

Convergence and Duality

  • Roman Frič
Article

Abstract

We describe dualities related to the foundations of probability theory in which sequential convergence and sequential continuity play an important role.

concrete category dual equivalence cogenerator reflection sober object MV-algebra bold algebra Łukasiewicz tribe D-poset sequential convergence sequential continuity measurable space measurable map probability event observable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J.: Mathematical Sructures and Categories (in Czech), SNTL Praha, Praha, 1982.Google Scholar
  2. 2.
    Adámek, J.: Theory of Mathematical Sructures, Reidel, Dordrecht, 1983.Google Scholar
  3. 3.
    Chovanec, F. and Kôpka, F.: Difference posets in the quantum structures background, Internat. J. Theoret. Phys. 39 (2000), 571–583.Google Scholar
  4. 4.
    Cignoli, R., D'Ottaviano, I. M. L. and Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, 2000.Google Scholar
  5. 5.
    Diers, Y.: Categories of algebraic sets, Appl. Categorical Structures 4 (1996), 329–341.Google Scholar
  6. 6.
    Diers, Y.: Affine algebraic sets relative to an algebraic theory, J. Geom. 65 (1999), 54–76.Google Scholar
  7. 7.
    Di Nola, A.: Representation and reticulation by quotients of MV-algebras, Ricerche Math. 40 (1991), 291–297.Google Scholar
  8. 8.
    Dvurečenskij, A. and Pulmannová, S.: New Trends in Quantum Structures, Kluwer Academic, Dordrecht, 2000.Google Scholar
  9. 9.
    Frič, R.: A Stone-type duality and its applications to probability, in Proceedings of the 12th Summer Conference on General Topology and its Applications, North Bay, August 1997, Topology Proceedings 22, pp. 125–137.Google Scholar
  10. 10.
    Frič, R.: Lukasiewicz tribes are absolutely sequentially closed bold algebras, Czechoslovak Math. J. (to appear.)Google Scholar
  11. 11.
    Giuli, E.: Zariski closure, completeness and compactness. in H. Herrlich and H.-E. Porst (eds), Mathematik-Arbeitspapiere (CatMAT 2000)54, Universität Bremen, 2000, pp. 207–216.Google Scholar
  12. 12.
    Lo´s, J: Fields of events and their definition in the axiomatic treatment of probability, Studia Logica 9 (1960), 95–115 (Polish); 116-124 (Russian summary); 125-132 (English summary).Google Scholar
  13. 13.
    Novák, J.: Ueber die eindeutigen stetigen Erweiterungen stetiger Funktionen, Czechoslovak Math. J. 8 (1958), 344–355.Google Scholar
  14. 14.
    Porst, H.-E. and Tholen, W.: Concrete dualities. in H. Herrlich and H.-E. Porst (eds), Category Theory at Work, Heldermann Verlag, Berlin, 1991, pp. 111–136.Google Scholar
  15. 15.
    Riečan, B. and Neubrunn, T.: Integral, Measure, and Ordering, Kluwer Academic, Dordrecht, 1997.Google Scholar
  16. 16.
    Rodabaugh, S. E.: Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40 (1991), 297–345.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Roman Frič
    • 1
  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovak Republic

Personalised recommendations