Chromosome Research

, Volume 10, Issue 3, pp 209–222

The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding

  • Wenhui Nie
  • Jinhuan Wang
  • Patricia C.M. O'Brien
  • Beiyuan Fu
  • Tian Ying
  • Malcolm A. Ferguson-Smith
  • Fengtang Yang
Article

Abstract

Genome-wide homology maps among stone marten (Martes foina, 2n = 38), domestic cat (Felis catus, 2n = 38), American mink (Mustela vison, 2n = 30), yellow-throated marten (Martes flavigula, 2n = 40), Old World badger (Meles meles, 2n = 44), ferret badger (Melogale moschata, 2n = 38) and red panda (Ailurus fulgens, 2n = 36) have been established by cross-species chromosome painting with a complete set of stone marten probes. In total, 18 stone marten autosomal probes reveal 20, 19, 21, 18 and 21 pairs of homologous chromosomal segments in the respective genomes of American mink, yellow-throated marten, Old World badger, ferret badger and red panda. Reciprocal painting between stone marten and cat delineated 21 pairs of homologous segments shared in both stone marten and cat genomes. The chromosomal painting results indicate that most chromosomes of these species are highly conserved and show one-to-one correspondence with stone marten and cat chromosomes or chromosomal arms, and that only a few interchromosomal rearrangements (Robertsonian fusions and fissions) have occurred during species radiation. By comparing the distribution patterns of conserved chromosomal segments in both these species and the putative ancestral carnivore karyotype, we have reconstructed the pathway of karyotype evolution of these species from the putative 2n = 42 ancestral carnivore karyotype. Our results support a close phylogenetic relationship between the red panda and mustelids. The homology data presented in these maps will allow us to transfer the cat gene mapping data to other unmapped carnivore species.

cat chromosome painting cytogenetics evolution Mustelidae phylogeny red panda 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bininda-Emonds ORP, Gittleman JL, Purvis A (1999) Building large treesb y combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74: 143–175.PubMedGoogle Scholar
  2. Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX malesus ing bivariate Low karyotype analysis and Low sorted dot blots. Cytometry 11: 202–207.PubMedGoogle Scholar
  3. Cavagna P, Menotti A, Stanyon R (2000) Genomic homology of the domestic ferret with cats and humans. Mammalian Genome 11: 866–870.PubMedGoogle Scholar
  4. Dragoo JW, Honeycutt RL (1997) Systematics of mustelid-like carnivores. J Mammal 78 (2): 426–443.Google Scholar
  5. Dutrillaux B, Couturier J (1983) The ancestral karyotype of carnivoria: comparison with that of platyrrhine monkeys. Cytogenet Cell Genet 35: 200–208.PubMedGoogle Scholar
  6. Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): congruence vsin compatibility among multiple data sets. Mol Phylogenet Evolution 9 (3): 414–426.Google Scholar
  7. Frönicke L, Müller-Navia J, Romanakis K, Scherthan H (1997) Chromosomal homologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma 106: 108–113.PubMedGoogle Scholar
  8. Graphodatsky AS, Yang F, O'Brien PCM et al. (2001) Phylogenetic implicationso f the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92: 243–247.PubMedGoogle Scholar
  9. Liu R, Nie W, Chen Y (1995) Chromosome study of stone marten. Zool Res (in Chinese) 16 (3): 275–279.Google Scholar
  10. Mandahl N, Fredga K (1975) Q-, G-and C-band patternsof the mink chromosomes. Hereditas 81: 211–220.PubMedGoogle Scholar
  11. Murphy WJ, Stanyon R, O'Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2 (6): 1–8.Google Scholar
  12. Nash WG, O'Brien SJ (1982) Conserved regions of homologous G-banding chromosomes between orders in mammalian evolution: carnivore and primates. Proc Natl Acad Sci USA 79: 6631–6635.PubMedGoogle Scholar
  13. Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O'Brien SJ (1998) Comparative genomics: Tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Cell Genet 83: 182–192.PubMedGoogle Scholar
  14. Nie W, Liu R, Chen Y, Wang J, Yang F (1998) Mapping chromosomal homologies between humans and two largurs (Semnopithecus francoisi andS. phayrei) by chromosome painting. Chromosome Res 6: 447–453.PubMedGoogle Scholar
  15. Nowak RM (1999) Walker's Mammals of the world. Sixth edn, Vol I. Baltimore and London Johns Hopkins University Press, pp 632–793.Google Scholar
  16. Rettenberger G, Klett C, Zechner U (1995) Zoo-FISH analysis: cat and human karyotypescl osely resemble the putative ancestral mammalian karyotype. Chromosome Res 3: 479–486.PubMedGoogle Scholar
  17. Spathas D, Ferguson-Smith MA (1993) A simpliced one step procedure for enhanced detection of biotinylated probeswi th Luorescein conjugates. Trends Genet 9: 262.PubMedGoogle Scholar
  18. Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR ampliced Low-sorted chromosomes. Gene Chromosomes Cancer 4: 257–263.Google Scholar
  19. Tian Y, Nie W, Wang J, Yang Y, Yang F (2002) Chromosome painting shows the red panda (Ailurus fulgens) hasa conserved karyotype. ACTA Genetica Sinica 29: 124–127.PubMedGoogle Scholar
  20. Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77: 211–217.PubMedGoogle Scholar
  21. Wozencraft WC (1989) The phylogeny of the recent Carnivora. In Wilson DE, Reeder, DM eds., ‘Carnivore Behavior, Ecology, and Evolution’ Washington, DC: Smithsonian Institution Press, pp 279–348.Google Scholar
  22. Wurster-Hill DH, Bush M (1980) The interrelationship of chromosome banding patterns in the giant panda (Ailuropoda melanoleuca), hybrid bear (Ursus middendorfi x Thalarctos maritimus), and other carnivores. Cytogenet Cell Genet 27: 147–154.PubMedGoogle Scholar
  23. Wurster-Hill DH, Centerwall WR (1982) The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids. Cytogenet Cell Genet 34, 178–182.PubMedGoogle Scholar
  24. Wurster-Hill DH, Gray CW (1973) Giemsa banding patterns in the chromosomeso f twelve speciesof cats (Felidae). Cytogenet Cell Genet 12: 377–397.Google Scholar
  25. Wurster-Hill DH, Gray CW (1975) The interrelationships of chromosome banding patterns in procyonids viverrids, and felids. Cytogenet Cell Genet 15: 306–331.PubMedGoogle Scholar
  26. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypesof muntjacs by chromosome painting. Chromosoma 103: 642–652.PubMedGoogle Scholar
  27. Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: Human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39: 396–401.PubMedGoogle Scholar
  28. Yang F, O'Brien PCM, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox, and human and itsi ntegration with canine genetic maps. Genomics 62,189–202.PubMedGoogle Scholar
  29. Yang F, Graphodatsky AS, O'Brien PCM et al. (2000) Reciprocal chromosome painting illustrates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 393–404.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Wenhui Nie
    • 1
  • Jinhuan Wang
    • 1
  • Patricia C.M. O'Brien
    • 2
  • Beiyuan Fu
    • 2
  • Tian Ying
    • 1
  • Malcolm A. Ferguson-Smith
    • 2
  • Fengtang Yang
    • 1
    • 2
  1. 1.Key Laboratory of Cellular & Molecular EvolutionThe Chinese Academy of SciencesKunming, YunnanPRC
  2. 2.Centre for Veterinary Science, Department of Clinical Veterinary MedicineUniversity of CambridgeCambridgeUK

Personalised recommendations