Plant Molecular Biology

, Volume 49, Issue 3–4, pp 357–372 | Cite as

Secondary messengers and phospholipase A2 in auxin signal transduction

  • Günther F.E. Scherer


Despite recent progress auxin signal transduction remains largely scetchy and enigmatic. A good body of evidence supports the notion that the ABP1 could be a functional receptor or part of a receptor, respectively, but this is not generally accepted. Evidence for other functional receptors is lacking, as is any clearcut evidence for a function of G proteins. Protons may serve as second messengers in guard cells but the existing evidence for a role of calcium remains to be clearified. Phospholipases C and D seem not to have a function in auxin signal transduction whereas the indications for a role of phospholipase A2 in auxin signal transduction accumulated recently. Mitogen-activated protein kinase (MAPK) is modulated by auxin and the protein kinase PINOID has a role in auxin transport modulation even though their functional linkage to other signalling molecules is ill-defined. It is hypothesized that signal transduction precedes activation of early genes such as IAA genes and that ubiquitination and the proteasome are a mechanism to integrate signal duration and signal strength in plants and act as major regulators of hormone sensitivity.

auxin fatty acid phospholipase A2 second messenger signal transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, S. and Theologis, A. 1996. Early genes and auxin action. Plant Physiol. 111: 9-17.Google Scholar
  2. Abel, S., Oeller, P.W. and Theologis, A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Biochemistry 33: 326-330.Google Scholar
  3. André, B. and Scherer, G.F.E. 1991. Stimulation by auxin of phospholipase A in membrane vesicles from an auxin-sensitive tissue is mediated by an auxin receptor. Planta 185: 209-214.Google Scholar
  4. Armstrong, F. and Blatt, M.R. 1995. Evidence for K+ channel control in Vicia guard cells coupled by G-proteins to a 7TMS receptor. Plant J. 8: 187-198.Google Scholar
  5. Ashikari, M., Wu, J., Yano, M., Sasaki, T. and Yoshimura, A. 1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc. Natl. Acad. Sci. USA 96: 10284-10289.Google Scholar
  6. Ayling, S.M., Brownlee, C. and Clarkson, D.T. 1994. The cytoplasmic streaming response of tomato root hairs to auxin; observations of cytosolic calcium levels. J. Plant Physiol. 143: 184-188.Google Scholar
  7. Balsinde, J. and Dennis, E.A. 1997. Function and inhibition of intracellular calcium-independent phospholipase A2. J. Biol. Chem. 272: 16069-16072.Google Scholar
  8. Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Ghislain, M. and Guern, J. 1989. Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc. Natl. Acad. Sci. USA 86: 891-895.Google Scholar
  9. Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Maurel, C., Palme, K., Schell, J. and Guern, J. 1991. Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant J. 1: 83-93.Google Scholar
  10. Bauly, J.M., Sealy, I.M., Macdonald, H., Brearley, J., Droge, S., Hillmer, S., Robinson, D.G., Venis, M.A., Blatt, M.R., Lazarus, C.M. and Napier, R.M. 2000. Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiol. 124: 1229-1238.Google Scholar
  11. Becker, D. and Hedrich, R. 2002. Channeling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol. Biol. 49: 349-356.Google Scholar
  12. Becker, J., Kempf, R., Jeblick, W. and Kauss, H. 2000. Induction of competence for elicitation of defense response in cucumber hypocotyls requires proteasome activity. Plant J. 21: 311-316.Google Scholar
  13. Becraft, P.W. 1998 Receptor kinases in plant development. Trends Plant Sci. 3: 384-388.Google Scholar
  14. Bellamine, J., Penel, C. and Greppin, H. 1993. Proton pump and IAA sensitivity changes in spinach leaves during the flowering induction. Plant Physiol. Biochem. 31: 197-203.Google Scholar
  15. Benedetti, C.E., Costa, C.L., Turcinelli, C.R. and Arruda, P. 1998. Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the coi1 mutant of Arabidopsis. Plant Physiol. 116: 1037-1042.Google Scholar
  16. Berleth, T., Mattson, J. and Hardtke, C.S. 2000. Vascular continuity and auxin signals. Trends Plant Sci. 5: 387-394.Google Scholar
  17. Blatt, M.R. and Thiel, G. 1994. K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin. Plant J. 5: 55-68.Google Scholar
  18. Blee, E. 1998. Phytooxylipins and plant defense reactions. Prog. Lipid Res. 37: 33-72.Google Scholar
  19. Bockaert, J. and Pin. J.P. 1999. Molecular tinkering of G proteincoupled receptors: an evolutionary success. EMBO J. 18: 1723-1729.Google Scholar
  20. Bögre, L., Meskiene, I., Heberle-Bors, E. and Hirt, H. 2000. Stressing the role of MAP kinases in mitogenic stimulation. Plant Mol. Biol. 43: 705-718.Google Scholar
  21. Bret-Harte, M.S., Baskin, T.I., and Green, P.B. 1991. Auxin-stimulated deposition and breakdown in material in the pea outer epidermal cell wall, as measured interferometrically. Planta 185: 462-470.Google Scholar
  22. Casal, J.J., Sánchez, R.A., and Yanowsky, R.A. 1997. The function of phytochrome A. Plant Cell Environ. 20: 813-819.Google Scholar
  23. Chandok M.R. and Sopory, S.K. 1998. ZmcPKC70, a protein kinase C-type enzyme from maize. Biochemical characterization, regulation by phorbol 12-myristate 13-acetate and its possible involvement in nitrate reductase gene expression. J. Biol. Chem. 273: 19235-19242.Google Scholar
  24. Chandra, S., Heinstein, P.F. and Low, P.S. 1996. Activation of phospholipase A by plant defense elicitors. Plant Physiol. 110: 979-986.Google Scholar
  25. Chen, J.-G., Ullah, H., Young, Y.C., Sussman, M.R. and Jones, A.M. 2001. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 15: 902-911.Google Scholar
  26. Cho, H.-T. and Hong, Y.-N. 1995. Effect of IAA on synthesis and activity of the plasma membrane H+-ATPase of sunflower hypocotyls, in relation to IAA-induced cell elongation and H+ excretion. J. Plant Physiol. 145: 717-725.Google Scholar
  27. Christensen, S.K., Dagenais, N., Chory, J. and Weigel, D. 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100: 469-478.Google Scholar
  28. Claussen, M., Lüthen, H., Blatt, M. and Böttger, M. 1997. Auxin-induced growth and its linkage to potassium channels. Planta 201: 227-234.Google Scholar
  29. Colon-Carmona, A., Chen, D.L., Yeh, K.C. and Abel, S. 2000. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol. 124: 1728-1738.Google Scholar
  30. Conconi, A., Miquel, M., Browse, J.A. and Ryan, C.A. 1996. Intracellular levels of free linolenic acid and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol. 111: 797-803.Google Scholar
  31. Cosgrove, D.J. 1997. Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell. Dev. Biol. 13: 171-201.Google Scholar
  32. Creelman, R.A. and Mullet, J.E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355-381.Google Scholar
  33. D'Agostino, I.B. and Kieber, J.J. 1999. Molecular mechanisms of cytokinin action. Curr. Opin. Plant Biol. 2: 359-364.Google Scholar
  34. D'Agostino, I.B., Deruere, J. and Kieber, J.J. 2000. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124: 1706-1717.Google Scholar
  35. den Boer, B.G. and Murray, J.A. 2000. Triggering the cell cycle in plants. Trends Cell Biol. 10: 245-250.Google Scholar
  36. den Hartog, M., Musgrave, A. and Munnik, T. 2000. Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J. 25: 55-65.Google Scholar
  37. DeLong, A., Mockaitis, K. and Christensen, S. 2001. Protein phosphorylation in the delivery of and response to auxin signals. Plant Mol. Biol. 49: 285-303.Google Scholar
  38. De Nisi, P., Dell'Orto, M., Pirovano, L., and Zocchi, G. 1999. Calcium-dependent phosphorylation regulates the plasma-membrane H+-ATPase activity of maize (Zea mays L.) roots. Planta 209: 187-194.Google Scholar
  39. Dennis, E. 1994. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269: 13057-13060.Google Scholar
  40. Dessen, A. 2000. Structure and mechanism of human cytosolic phospholipase A2. Biochim. Biophys. Acta 1488: 40-47.Google Scholar
  41. Desbrooses, G., Stelling, J. and Renaudin, J.P. 1998. Dephosphorylation activates the purified plasma membrane H+-ATPase: possible function of phosphothreonine residues in a mechanism not involving the regulatory C-terminal domain of the enzyme. Eur. J. Biochem. 251: 496-503.Google Scholar
  42. Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., von Heijne, G. and Schulze-Lefert, P. 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol. Chem. 274: 34993-35004.Google Scholar
  43. Dhondt, S., Geoffroy, P., Stelmach, B.A., Legrand, M. and Heitz, T. 2000. Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J. 23: 431-440.Google Scholar
  44. Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, R.T., Carney, J.R. and DeVilbiss, E.D. 2000. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc. Natl. Acad. Sci. USA 97: 6128-6223.Google Scholar
  45. Ettlinger, C. and Lehle, L. 1988. Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176-178.Google Scholar
  46. Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206.Google Scholar
  47. Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D. and Chory, J. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539-1541.Google Scholar
  48. Farmer, E.F. 1992. Fatty acid signalling in plants and their associated microorganisms. Plant Mol. Biol. 26: 1423-1437.Google Scholar
  49. Farmer, P.K. and Choi, J.H. 1999. Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.). Biochim. Biophys. Acta 1434: 6-17.Google Scholar
  50. Farmer, E.E., Weber, H. and Vollenweider, S. 1998. Fatty acid signaling in Arabidopsis. Planta 206: 167-174.Google Scholar
  51. Felle, H. 1988. Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174: 495-499.Google Scholar
  52. François, J.M., Bervilé, A. and Rossignol, M. 1992. Development and line variations of Petunia plasma membrane H+-ATPase sensitivity to auxin. Plant Sci. 87: 19-27.Google Scholar
  53. Frias, I., Caldeira, M.T., Perez-Castineira, J.R., Navarro-Avino, J.P., Culianez-Mazia, F.A., Kuppinger, O., Stransky, H., Montserrat, P., Hager, A. and Serrano, R. 1996. A major isoform of the maize plasma membrane ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8: 1533-1544.Google Scholar
  54. Fu, Y., Wu, G. and Yang, Z. 2001. Rop gtpase-dependent dynamics of tip-localized f-actin controls tip growth in pollen tubes. J. Cell Biol. 152: 1019-1032.Google Scholar
  55. Fuglsang, A.T., Visconti, S., Drumm, K., Jahn, T., Stensballe, A., Mattei, B., Jensen, O.N., Aducci, P. and Palmgren M.G. 1999. Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the threeC-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J. Biol. Chem. 274: 36774-36780.Google Scholar
  56. Gehring, C.A., Irving, H.R. and Parish, R.W. 1990. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc. Natl. Acad. Sci. USA 87: 9645-9649.Google Scholar
  57. Gil, P., Kircher, S., Adam, E., Bury, E., Kozma-Bognar, L., Schäfer, E. and Nagy, F. 2000. Photocontrol of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings. Plant J. 22: 135-145.Google Scholar
  58. Grabov, A. and Blatt, M.R. 1997. Parallel control of the inwardrectifier K+ channel by cytosolic-free Ca2+ and pH in Vicia guard cells. Planta 201: 84-95.Google Scholar
  59. Gray, W.M. and Estelle, I. 2000. Function of the ubiquitinproteasome pathway in auxin response. Trends Biochem. Sci. 25: 133-138.Google Scholar
  60. Guilfoyle, T., Hagen, G., Ulmasov, T. and Murfett, J. 1998. How does auxin turn on genes? Plant Physiol. 118: 341-347.Google Scholar
  61. Hager, A., Debus, G., Edel, H.-G., Stransky, H. and Serrano, R. 1991. Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185: 527-537.Google Scholar
  62. Hager, A., Brich, M., Debus, G., Edel, H.G. and Priester, G. 1989. Membrane metabolism and growth. Phospholipases, protein kinases and exocytotic processes in coleoptiles in Zea mays. In: PlantWater Relations and Growth under Stress, Yamada Science Foundation, Osaka, Tokyo, pp. 275-282.Google Scholar
  63. Haschke, H.P. and Lüttge, U. 1973. β-Indolylessigsäure (IES)-abhängiger K+-H+-Austauschmechanismus und Streckungswachstum bei Avena-Koleoptilen. Z. Naturforsch. 28: 555-558.Google Scholar
  64. Hardtke, C.S. and Berleth, T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17: 1405-1411.Google Scholar
  65. Harper, J.F., Binder, B.M. and Sussman, M.R. 1993. Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli. Biochemistry 32: 3282-3290.Google Scholar
  66. Harper, R.M., Stowe-Evans, E.L., Luesse, D.R., Muto, H., Tatematsu, K., Watahiki, M.K., Yamamoto, K. and Liscum, E. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757-770.Google Scholar
  67. Hisada, A., Hanzawa, H., Weller, J.L., Nagatani, A., Reid, J.B. and Furuya, M. 2000. Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures. Plant Cell 12: 1063-1078.Google Scholar
  68. Huang, S., Cerny, R.E., Bhat, D.S. and Brown, S.M. 2001. Cloning of an Arabidopsis patatin-like gene, STURDY, by activation tagging. Plant Physiol. 125: 573-584.Google Scholar
  69. Jones, A.M. 1980. Location of transported auxin in etiolated maize shoots using 5-azidoindol-3-acetic acid. Plant Physiol. 93: 1154-1161.Google Scholar
  70. Jones, A.M., Im, K.H., Savka, M.A., Wu, M.J., DeWitt, N.G., Shillito, R. and Binns, A.N. 1998. Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282: 1114-1117.Google Scholar
  71. Jung, K.M. and Kim, D.K. 2000. Purification and characterization of a membrane-associated 48-kilodalton phospholipase A2 in leaves of broad bean. Plant Physiol. 123: 1057-1067.Google Scholar
  72. Kaydamov, C., Tewes, A. Adler, K. and Manteuffel, R. 2000. Molecular characterization of cDNAs encoding G protein alpha and beta subunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv. Biochim. Biophys. Acta 1491: 143-160.Google Scholar
  73. Khan, W.A., Blobe, C., Halpern, A., Taylor, W., Wetsel, W.C., Burns, D., Loomis, C. and Hannun, Y.A. 1993. Selective regulation by protein kinase C isoenzymes by oleic acid in human platelets. J. Biol. Chem. 268: 5063-5068.Google Scholar
  74. Kim, L., Kircher, S., Toth, R., Adam, E., Schäfer, E. and Nagy, F. 2000. Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J. 22: 125-123.Google Scholar
  75. Kinoshita, T., Nishimura, M. and Shimazaki, K.I. 1995. Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7: 1333-1342.Google Scholar
  76. Kinoshita, T. and Shimazaki, K. 1999. Blue light activates plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18: 5548-5558.Google Scholar
  77. Klämbt, D. 1990. A view about the function of auxin-binding proteins at the plasma membranes. Plant Mol. Biol. 14: 1045-1050.Google Scholar
  78. Klucis, E. and Polya, G.M. 1987. Calcium-independent activation of two plant leaf calcium-regulated protein kinases by fatty acids. Biochem. Biophys. Res. Commun. 147: 1041-1047.Google Scholar
  79. Kovtun, Y., Chiu, W.L., Zeng, W. and Sheen, J. 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716-720.Google Scholar
  80. Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97: 2940-2945.Google Scholar
  81. Lease, K., Ingham, E. and Walker, J.C. 1998. Challenges in understanding RLK function. Curr. Opin. Plant Biol. 5: 388-392.Google Scholar
  82. Leblanc, N., David, K., Grosclaude, J., Pradier, J.M., Barbier-Brygoo, H., Labiau, S. and Perrot-Rechenmann, C. 1999. A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J. Biol. Chem. 274: 28314-28320.Google Scholar
  83. Lee, Y.R. and Assmann, S.M. 1999. Arabidopsis thaliana 'extralarge GTP-binding protein' (AtXLG1): a new class of G-protein. Plant Mol. Biol. 40: 55-64.Google Scholar
  84. Lee, S.-S., Kawakita, K., Tsuge, T. and Doke, N. 1992. Stimulation of phospholipase A2 in strawberry cells treated with AF-toxin 1 produced by Alternaria alternata strawberry phenotype. Physiol. Mol. Plant Path. 41: 283-294.Google Scholar
  85. Lee, Y., Lee, H.J., Crain, R.C., Lee, A. and Korn, S.J. 1994. Polyunsaturated fatty acids modulate stomatal aperture and two distinct K+ channel currents in guard cells. Cell. Sign. 6: 181-186.Google Scholar
  86. Lee, S., Suh, S., Kim, S., Crain, R.C., Kwak, J.M., Nam, H.-G. and Lee, Y. 1997. Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J. 12: 547-556.Google Scholar
  87. Leyser, H.M., Lincoln, C.A., Timpte, C., Lammer, D., Turner, J. and Estelle, M. 1993. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364: 161-164.Google Scholar
  88. Leyser, O. 1998. Auxin signalling: protein stability as a versatile control target. Curr. Biol. 8: 305-307.Google Scholar
  89. Li, W. and Assmann, S.M. 1993. Characterization of a G-proteinregulated outward K+ current in mesophyll cells of Vicia faba L. Proc. Natl. Acad. Sci. USA 90: 262-266.Google Scholar
  90. Lin, C. 2000. Plant blue light receptors. Trends Plant Sci. 5: 337-342.Google Scholar
  91. Lucantoni, A. and Polya, G.M. 1987. Activation of wheat embryo Ca2+-regulated protein kinase by unsaturated fatty acids in the presence and absence of calcium. FEBS Lett. 221: 33-36.Google Scholar
  92. Lüthen, H., Claussen, M. and Böttger, M. 1999. Growth: progress in auxin research. Prog. Bot. 60: 315-340.Google Scholar
  93. Marshall, C.J. 1996. Ras effectors. Curr. Opin. Cell Biol. 8: 197-204.Google Scholar
  94. Martiny-Baron, G., Hecker, D., Manolson, M.F., Poole, R.J. and Scherer, G.F.E. 1992. Proton transport and phosphorylation of tonoplast polypeptides from zucchini are stimulated by the phospholipid platelet-activating factor. Plant Physiol. 99: 1635-1641.Google Scholar
  95. Martiny-Baron, G. and Scherer, G.F.E. 1989. Phospholipidstimulated protein kinase in plants. J. Biol. Chem. 264: 18052-18059.Google Scholar
  96. Mason, M.G. and Botellan, J.R. 2000. Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA Proc. Natl. Acad. Sci. USA 97: 14784-14788.Google Scholar
  97. McDonald, H. 1997. Auxin perception and signal transduction. Physiol. Plant. 100: 423-430.Google Scholar
  98. Millner, P.A., Groarke, D.A. and White, I.R. 1996. Synthetic peptides as probes of plant cell signalling: G-proteins and the auxin signalling pathway. Plant Growth Regul. 18: 143-147.Google Scholar
  99. Mizoguchi, T., Gotoh, Y., Nishida, E., Yamaguchi-Shinozaki, K., Hayashida, N., Iwasaki, T., Kamada, H., and Shinozaki, K. 1994. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 5: 111-122.Google Scholar
  100. Mockaitis, K. and Howell, S.H. 2000. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24: 785-796.Google Scholar
  101. Morré, D.J. 1994. Hormone-and growth factor-stimulated NADH oxidase. J. Bioenerg. Biomembr. 26: 421-433.Google Scholar
  102. Morré, D.J. 1995. The role of NADH oxidase in growth and physical membrane displacement. Protoplasma 184: 14-21.Google Scholar
  103. Morré, D.J., de Cabo, R., Jacobs, E. and Morré, D.M. 1995. Auxinmodulated protein disulfide-thiol-interchange activity from soybean plasma membranes. Plant Physiol. 109: 573-578.Google Scholar
  104. Mueller, M.J., Brodschelm, W., Spannagl, E.and Zenk, M.H. 1993. Signalling in the elicitation process is mediated through the octadecenoid pathway leading to jasmonic acid. Proc. Natl. Acad. Sci. USA 90: 7490-7494.Google Scholar
  105. Munnik, T., Irvine, R.F. and Musgrave, A. 1998. Phospholipid signalling in plantsq. Biochim. Biophys. Acta 1389: 222-272.Google Scholar
  106. Nagpal, P., Walker, L.M., Young, J.C., Sonawala, A., Timpte, C., Estelle, M. and Reed, J.W. 2000. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 123: 563-574.Google Scholar
  107. Napier, R.M. 1995. Towards an understanding of ABP1. J. Exp. Bot. 46: 1787-1795.Google Scholar
  108. Napier, R.M. and Venis, M.A. 1995. Auxin action and auxinbinding proteins. New Phytol. 129: 167-201.Google Scholar
  109. Narvaez-Vasquez, J., Florin-Christensen, J. and Ryan, C.A. 1999. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11: 2249-2260.Google Scholar
  110. Nemenoff, R.A., Winitz, S., Quian, N.-X., van Putten, V., Johnson, G.L. and Heasley, L.E. 1993. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J. Biol. Chem. 268: 1960-1964.Google Scholar
  111. Nickel, R., Schütte, M., Hecker, D. and Scherer, G.F.E. 1991. The phospholipid platelet-activating factor stimulates proton extrusion in cultured soybean cells and protein phosphorylation and ATPase activity in plasma membranes. J. Plant Physiol. 139: 205-211.Google Scholar
  112. Oishi, K., Zheng, B. and Kuo, J.F. 1990. Inhibition of Na,K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J. Biol. Chem. 265: 70-75.Google Scholar
  113. Palme, K. and Gälweiler, L. 1999. PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol. 5: 375-381.Google Scholar
  114. Palmgren, M.G. and Sommarin, M. 1989. Lysophosphatidylcholine stimulates ATP-dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol. 90: 1009-1014.Google Scholar
  115. Paul, R. 1999. Untersuchungen zur Funktion von Phospholipase A2 und Phospholipase C im Signaltransduktionsweg von Auxin und Pilzelicitor in Petersiliezellkulturen. Doctoral thesis, University of Hannover, Germany.Google Scholar
  116. Paul, R., Holk, A. and Scherer, G.F.E. 1998. Fatty acids and lysophospholipids as potential second messengers in auxin action. Rapid activation of phospholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J. 16: 601-611.Google Scholar
  117. Peltier, J.B. and Rossignol, M. 1996. Auxin-induced differential sensitivity of the H+-ATPase in plasma membrane subfractions from tobacco cells. Biochem. Biophys. Res. Commun. 219: 492-496.Google Scholar
  118. Peng, J. Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. 1997. The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev. 11: 3194-3205.Google Scholar
  119. Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D., and Harberd, N.P. 1999. 'Green Revolution' genes encode mutant gibberellin response modulators. Nature 400: 265-261.Google Scholar
  120. Philippar, K., Fuchs, I., Lüthen, H., Hoth, S., Bauer, C.S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Böttger, M., Becker, D. and Hedrich, R. 1999. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl. Acad. Sci. USA 96: 12186-12191.Google Scholar
  121. Phillips, G.D., Preshaw, C. and Steer, M.W. 1988. Dictyosome vesicle production and plasma membrane turnover in auxinstimulated outer epidermal cells of coleoptile segments from Avena sativa (L.). Protoplasma 145: 59-65.Google Scholar
  122. Plakidou-Dymock, S., Dymock, D. and Hooley, R. 1998. A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Curr. Biol. 12: 315-324.Google Scholar
  123. Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y. and Wagner, D. 1995. Phytochromes: photosensory perception and signal transduction. Science 268: 675-680.Google Scholar
  124. Ray, P.M. 1987. Involvement of macromolecule biosynthesis in auxin and fusicoccin enhancement of β-glucan synthase activity in pea. Plant Physiol. 85: 523-528.Google Scholar
  125. Robertson, M., Swain, S.M., Chandler, P.M., Olszewski, N.E. 1998. Identification of a negative regulator of gibberellin action, HvSPY, in barley. Plant Cell 10: 995-1007.Google Scholar
  126. Roos, W. 2000. Ionmapping in plant cells-methods and applications in signal transduction research. Planta 210: 347-370.Google Scholar
  127. Roos, W., Dordschbal, B., Steighardt, J., Hieke, M., Weiss, D. and Saalbach, G. 1999. A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica. Biochim. Biophys. Acta 1448: 390-402.Google Scholar
  128. Rouse, D., Mackay, P., Stirnberg, P., Estelle, M. and Leyser, O. 1998. Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371-1373.Google Scholar
  129. Roy, S., Pouénat, M.-L., Caumont, C., Cariven, C., Prévost, M.-C. and Esquerré-Tugayé, M.-T. 1995. Phospholipase activity and phospholipid patterns in tobacco cells treated with fungal elicitor. Plant Sci. 107: 17-25.Google Scholar
  130. Rück, A., Palme, K., Venis, M.A., Napier, R.A. and Felle, H.H. 1993. Patch-clamp analysis establishes a role for an auxinbinding protein in the auxin stimulation of plasma membrane currents in Zea mays protoplasts. Plant J. 4: 41-46.Google Scholar
  131. Ryan, C.A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477: 112-121Google Scholar
  132. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P. and Scheres, B. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472.Google Scholar
  133. Santoni, V., Vansuyt, G. and Rossignol. M. 1991. Indoleacetic acid pretreatment of tobacco plants in vivo increases the in vitro sensitivity to auxin of the plasma membrane H+-ATPase from leaves and modifies the polypeptide composition of the membrane. FEBS Lett. 326: 17-20.Google Scholar
  134. Satoshi, A., Shingo, M., Keisuke, K., Misako, H. and Takashi, S. 1999. Involvement of group VI Ca2+-independent phospholipase A2 in protein kinase C-dependent arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells. J. Biol. Chem. 274: 19906-19912.Google Scholar
  135. Schaller, G.E., Harmon, A. and Sussman, M.A. 1992. Characterization of a calcium-and lipid-dependent protein kinase associated with the plasma membrane of oat. Biochemistry 31: 1721-1727.Google Scholar
  136. Scherer, G.F.E. 1981. Auxin-stimulated ATPase in membrane fractions from pumpkin hypocotyls (Cucurbita maxima L.). Planta 151: 434-438.Google Scholar
  137. Scherer, G.F.E. 1990. Phospholipid-activated protein kinase in plants: coupled to phospholipase A2? In: R. Ranjeva and A.M. Boudet (Eds.) Signal Perception and Transduction in Higher Plants, NATO ASI series H vol. 47, Springer-Verlag, Berlin/Heidelberg/New York, pp. 69-82.Google Scholar
  138. Scherer, G.F.E. 1992. Stimulation of growth and phospholipase A2 by the peptides mastoparan and melittin and by the auxin 2,4-dichlorophenoxyacetic acid. Plant Growth Regul. 11: 153-157.Google Scholar
  139. Scherer, G.F.E. 1995. Activation of phospholipase A by auxin and mastoparan in hypocotyl segments from zucchini and sunflower. J. Plant Physiol. 145: 483-490.Google Scholar
  140. Scherer, G.F.E. 1996. Phospholipid signalling and lipid-derived second messengers in plants. Plant Growth Regul. 18: 125-133.Google Scholar
  141. Scherer, G.F.E. and André, B. 1989. A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem. Biophys. Res. Commun. 163: 111-117.Google Scholar
  142. Scherer, G.F.E. and André, B. 1993. Stimulation of phospholipase A2 by auxin in microsomes from suspension-cultured soybean cells is receptor-mediated and influenced by nucleotides. Planta 191: 515-523.Google Scholar
  143. Scherer, G.F.E. and Arnold, B. 1997. Auxin-induced growth is inhibited by phospholipase A2 inhibitors. Implications for auxininduced signal transduction. Planta 202: 462-469.Google Scholar
  144. Scherer, G.F.E and Nickel, R. 1988. The animal ether phospholipid platelet-activating factor stimulates acidification of the incubation medium by cultured soybean cells. Plant Cell Rep. 7: 575-578.Google Scholar
  145. Scherer, G.F.E. and Stoffel, B. 1987. A plant lipid and the plateletactivating factor stimulate ATP-dependent H+ transport in isolated plant membrane vesicles. Planta 172: 127-130.Google Scholar
  146. Scherer, G.F.E., Martiny-Baron, G. and Stoffel, B. 1988. A new set of regulatory molecules in plants: a plant phospholipid similar to platelet-activating factor stimulates protein kinase and protontranslocating ATPase in membrane vesicles. Planta 175: 241-253Google Scholar
  147. Scherer, G.F.E., André, B. and Martiny-Baron, G. 1990. Hormoneactivated phospholipase A2 and lysophospholipid-activated protein kinase: a new signal transduction chain and a new second messenger system in plants? Curr. Top. Plant Biochem. Physiol. 9: 190-218.Google Scholar
  148. Scherer, G.F.E., Paul, R.U. and Holk, A. 2000. Phospholipase A2 in auxin and elicitor signal transduction in cultured parsley cells (Petrosilenium crispum L.). Plant Growth Regul. 32: 123-128.Google Scholar
  149. Schindler, T., Bergfeld, R., Hohl, M. and Schopfer, P. 1994. Inhibition of Golgi-apparatus function by brefeldin A in maize coleoptiles and its consequences on auxin-mediated growth, cellwall extensibility and secretion of cell-wall proteins. Planta 192: 404-413.Google Scholar
  150. Schweizer, P., Felix, G., Buchala, A., Müller, C. and Métraux, J.-P. 1996. Perception of free cutin monomers by plant cells. Plant J. 10: 331-341.Google Scholar
  151. Senda, K., Yoshioka, H., Doke, N. and Kawakita, K. 1996. A cytosolic phospholipase A2 from potato tissues appears to be patatin. Plant Cell Physiol. 37: 347-353.Google Scholar
  152. Shimmen, T. and Yokota, E. 1994. Physiological and biochemical aspects of cytoplasmic streaming. Int. Rev. Cytol. 155: 97-139.Google Scholar
  153. Shishova, M. and Lindberg, S. 1997. Auxin-induced cytosol acidifi-cation in wheat leaf protoplasts depends on expternal concentration of Ca2+. J. Plant Physiol. 155: 190-196.Google Scholar
  154. Silverstone, A.L., Ciampaglio, C.N. and Sun, T. 1998. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146: 1087-1099.Google Scholar
  155. Sitbon, F. and Perrot-Rechenmann, C. 1997. Expression of auxinregulated genes. Plant Physiol. 100: 443-455.Google Scholar
  156. Six, D.A. and Dennis, E.A. 2000. The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim. Biophys. Acta 1488: 1-19.Google Scholar
  157. Snijder, H.J., Ubarretxena-Belandia, I., Blaauw, M., Kalk, K.H., Verheij, H.M., Egmond, M.R., Dekker, N. and Dijkstra, B.W. 1999. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401: 717-721.Google Scholar
  158. Sowka, S., Wagner, S., Krebitz, M., Arija-Mad-Arif, S., Yusof, F., Kinaciyan, T., Brehler, R., Scheiner, O. and Breiteneder, H. 1998. cDNA cloning of the 43-kDa latex allergen Hev b 7 with sequence similarity to patatins and its expression in the yeast Pichia pastoris. Eur. J. Biochem. 255: 213-219.Google Scholar
  159. Stafforini, D.M., McIntyre, T.M., Zimmermann, G.A. and Prescott, S.M. 1997. Platelet-activating factor acetylhydrolases. J. Biol. Chem. 272: 17895-17898.Google Scholar
  160. Ståhl, U., Ek, B. and Stymme, S. 1998. Purification and characterization of low-molecular-weight phospholipase A2 from developing seeds of elm. Plant Physiol. 117: 197-205.Google Scholar
  161. Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Gälweiler, L., Palme, K. and Jürgens, G. 1999. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316-318.Google Scholar
  162. Stewart, P.A. 1983. Modern quantitative acid-base chemistry. Can. J. Physiol. Pharmacol. 61: 1444-1461.Google Scholar
  163. Street, I.P., Lin, H.K., Lalibert, F., Ghomashchi, F., Wang, Z.Y., Perrier, H., Tremblay, N.M., Huang, Z., Weech, P.K. and Gelb, M.H. 1993. Slow-binding and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32: 5935-5940.Google Scholar
  164. Subramanian, R., Després, C. and Brisson, N. 1997. A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato. Plant Cell 9: 653-664.Google Scholar
  165. Sugaya, S., Ohmiya, A., Kikuchi, M. and Hayashi, T. 2000. Isolation and characterization of a 60 kDa 2,4-D-binding protein from the shoot apices of peach trees (Prunus persica L.); it is a homologue of protein disulfide isomerase. Plant Cell Physiol. 41: 503-508.Google Scholar
  166. Sutter, J.-U., Homann, U. and Thiel, G. 2000. Ca2+-stimulated exocytosis in maize coleoptiles. Plant Cell 12: 1127-1136.Google Scholar
  167. Suzuki, K. and Shinshi, H. 1995. Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7: 639-647.Google Scholar
  168. Sweeney, B.M. and Thimann, K.V. 1942. The effects of auxin on protoplasmic streaming. III. J. Gen. Physiol. 25: 841-851.Google Scholar
  169. Sweeney, B.M. 1944. The effect of auxin on protoplasmic streaming in root hairs of Avena. Am. J. Bot. 31: 78-80.Google Scholar
  170. Szczegielniak, J., Liwosz, A., Jurkowski, I., Loog, M., Dobrowolska, G., Ek, P., Harmon, A.C. and Muszynska, G. 2000. Calcium dependent protein kinase from maize seedlings activated by phospholipids. Eur. J. Biochem. 267: 3818-3827.Google Scholar
  171. Tena, G. and Renaudin, J.P. 1998. Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinases in tobacco cells. Plant J. 16: 173-182.Google Scholar
  172. Thiel, G. and Weise, R. 1999. Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta 208: 38-45.Google Scholar
  173. Thiel, G., Blatt, M.R., Fricker, M.D., White, I.R. and Millner, P. 1993. Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin-binding protein C terminus. Proc. Natl. Acad. Sci. USA 90: 11493-11497.Google Scholar
  174. Thornton, T.M., Swain, S.M. and Olszewski, N.E. 1999. Gibberellin signal transduction presents... the SPY who O-GlcNAc'd me. Trends Plant Sci. 4: 424-428.Google Scholar
  175. Tian, Q. and Reed, J.W. 1999. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126: 711-721.Google Scholar
  176. Tian, H., Klämbt, D. and Jones, A.M. 1995. Auxin binding protein 1 does not bind auxin within the endoplasmic reticulum despite its being the predominant subcellular location of this hormone receptor. J. Biol. Chem. 270: 26962-26969.Google Scholar
  177. Trewawas, A.J. 1981a. Growth substance sensitivity: the limiting factor in plant development. Physiol. Plant. 55: 60-70.Google Scholar
  178. Trewawas, A.J. 1981b. How do plant growth substances work? Plant Cell Envir. 4: 203-228.Google Scholar
  179. Ueguchi-Tanaka, M., Fujisawa, Y., Kobayashi, M., Ashikari, M., Iwasaki, Y., Kitano, H. and Matsuoka, M. 2000. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc. Natl. Acad. Sci. USA 97: 11638-11643.Google Scholar
  180. Ullah, H., Chen, J.-G., Young, J.C., Im, K.-H., Sussman, M.R., Jones, A.M. 2001. Modulation of cell proliferation by G-protein alpha subunits in Arabidopsis. Science 292: 2066-2069.Google Scholar
  181. Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T.J. 1997a. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971.Google Scholar
  182. Ulmasov, T., Hagen, G., Guilfoyle, T.J. 1997b. ARF1, a transcription factor that binds auxin response elements. Science 276: 1865-1866.Google Scholar
  183. Ulmasov, T., Hagen, G. and Guilfoyle, T.J. 1999. Activation and repression of transcription by auxin-response factors. Proc. Natl. Acad. Sci. USA 96: 5844-5849.Google Scholar
  184. Urao, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2000. Two-component systems in plant signal transduction. Trends Plant Sci. 5: 67-74.Google Scholar
  185. van der Luit, A.H., Piatti, T., van Doorn, A., Musgrave, A., Felix, G., Boller, T. and Munnik, T. 2000. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol. 123: 1507-1524.Google Scholar
  186. Venis, M.A. and Napier, R.M. 1995. Auxin receptors and auxin binding proteins. Crit. Rev. Plant Sci. 14: 27-47.Google Scholar
  187. Venis, M.A., Napier, R.M., Barbier-Brygoo, H., Maurel, C., Perrot-Rechenmann, C. and Guern, J. 1992. Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proc. Natl. Acad. Sci. USA 89: 7208-7212.Google Scholar
  188. Wang, X.-Q., Ullah, H., Jones, A.M. and Assmann, S.M. 2001. G-protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292: 2070-2072.Google Scholar
  189. Weiss, C.A., Garnaat, C.W., Mukai, K., Hu, Y. and Ma, H. 1994. Isolation of cDNAs encoding guanine nucleotide-binding protein β-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc. Natl. Acad. Sci. USA 91: 9554-9558.Google Scholar
  190. Weiss, C.A., Huang, H. and Ma, H. 1993. Immunolocalization of the G protein alpha subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell 11: 1513-1528.Google Scholar
  191. Winstead, M.V., Balsinde, J. and Dennis, E.A. 2000. Calcium-independent phospholipase A2: structure and function. Biochim. Biophys. Acta 1488: 28-39.Google Scholar
  192. Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. 2000. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J. 21: 553-562.Google Scholar
  193. Wu, W.H. and Assmann, S.M. 1994. A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc. Natl. Acad. Sci. USA. 91: 6310-6314.Google Scholar
  194. Yang, T. and Poovaiah, B.W. 2000. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. 275: 3137-3143.Google Scholar
  195. Yeh, K.C. and Lagarias, J.C. 1998. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. USA 95: 13976-13981.Google Scholar
  196. Yi, H., Park, D. and Lee, Y. 1996. In vivo evidence for the involvement of phospholipase A and protein kinase in the signal transduction pathway for auxin-induced corn coleoptile elongation. Physiol. Plant. 96: 359-368.Google Scholar
  197. Yokota, E., Muto, S. and Shimmen, T. 1999. Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol. 119: 231-239.Google Scholar
  198. Zaina, S., Reggiani, R. and Bertani, A. 1990. Preliminary evidence for involvement of GTP-binding protein(s) in auxin signal transduction in rice (Oryza sativa L.) coleoptile. J. Plant Physiol. 136: 653-658.Google Scholar
  199. Zbell, B. and Walter-Back, C. 1989. Signal transduction of auxin on isolated plant cell membranes: indications for a rapid polyphosphoinositide response stimulated by indoleacetic acid. J. Plant Physiol. 133: 353-360.Google Scholar
  200. Zheng, Z.L. and Yang, Z. 2000. The Rop GTPase switch turns on polar growth in pollen. Trends Plant Sci. 5: 298-303.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Günther F.E. Scherer
    • 1
  1. 1.Universität Hannover, Institut für Zierpflanzenbau, Baumschule und Pflanzenzüchtung, Abt. Spezielle ErtragsphysiologieHannoverGermany

Personalised recommendations