, Volume 19, Issue 1, pp 73–100

Order Dimension, Strong Bruhat Order and Lattice Properties for Posets

  • Nathan Reading

DOI: 10.1023/A:1015287106470

Cite this article as:
Reading, N. Order (2002) 19: 73. doi:10.1023/A:1015287106470


We determine the order dimension of the strong Bruhat order on finite Coxeter groups of types A, B and H. The order dimension is determined using a generalization of a theorem of Dilworth: dim (P)=width(Irr(P)), whenever P satisfies a simple order-theoretic condition called here the dissective property (or “clivage”). The result for dissective posets follows from an upper bound and lower bound on the dimension of any finite poset. The dissective property is related, via MacNeille completion, to the distributive property of lattices. We show a similar connection between quotients of the strong Bruhat order with respect to parabolic subgroups and lattice quotients.

Bruhat clivage congruence Coxeter critical complex Dilworth dissective distributive lattice MacNeille completion monotone triangle order dimension 

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Nathan Reading
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisU.S.A.

Personalised recommendations