Advertisement

Interface Science

, Volume 10, Issue 1, pp 99–110 | Cite as

Cation Segregation in an Oxide Ceramic with Low Solubility: Yttrium Doped α-Alumina

  • M.A. Gülgün
  • R. Voytovych
  • I. Maclaren
  • M. Rühle
  • R.M. Cannon
Article

Abstract

The segregation behaviour of a cation (yttrium) with a low solubility in the polycrystalline oxide host (α-Al2O3) has been investigated at temperatures between 1450 and 1650°C using analytical scanning transmission electron microscopy. Three distinct segregation regimes were identified. In the first, the yttrium adsorbs to all grain boundaries with a high partitioning coefficient, and this can be modelled using a simple McLean-Langmuir type absorption isotherm. In the second, a noticeable deviation from this isotherm is observed and the grain boundary excess reaches a maximum of 9 Y-cat/nm2 and precipitates of a second phase (yttrium aluminate garnet, YAG) start to form. In the third regime, the grain boundary excess of the cation settles down to a value of 6–7 Y-cat/nm2 that is in equilibrium with the YAG precipitates. In a material (accidentally) co-doped with Zr, the Zr seems to behave in a similar way to the Y and the Y + Zr grain boundary excess behaves in the same way as the Y grain boundary excess in the pure Y-doped system. In this latter system, Y-stabilised cubic zirconia is precipitated in addition to YAG at higher Y + Zr concentrations.

α-alumina grain boundary segregation adsorption precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.D. Kaplan, H. Müllejans, M. Rühle, J. Rödel, and N. Claussen, J. Am. Ceram. Soc. 78, 2841 (1995).Google Scholar
  2. 2.
    M.A. Gülgün and M. Rühle, in Creep and Fracture of Engineering Materials and Structures, edited by T. Sakuma and K. Yagi, Key Engineering Materials,Vol. 171-174 (Transtec Publications Ltd., uetikon-Zurich, Switzerland, 2000), p. 793.Google Scholar
  3. 3.
    F. Tang, S. Nakazawa, and M. Hagiwara, Mater. Sci. Eng.A315, 147 (2001).Google Scholar
  4. 4.
    I.J. Bae and S.I. Baik, J. Am. Ceram. Soc. 80, 1146 (1997).Google Scholar
  5. 5.
    D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman, B. Straumal, and W. Gust, Phil. Mag. Lett. 72, 361 (1995).Google Scholar
  6. 6.
    P.-L. Chen and I.-W. Chen, J. Am. Ceram. Soc. 79, 1793 (1996).Google Scholar
  7. 7.
    M. Aoki, Y.M. Chiang, I. Kosacki, I.J.R. Lee, H. Tuller, and Y.P. Liu, J. Am. Ceram. Soc. 79, 1169 (1996).Google Scholar
  8. 8.
    P. Lejcek, S. Hofmann, and A. Krajnikov, Mater. Sci. Eng. A 234, 283 (1997).Google Scholar
  9. 9.
    S. Lartigue, L. Priester, F. Dupau, P. Gruffel, and C. Carry,Mater.Sci. Eng. A164, 211 (1993).Google Scholar
  10. 10.
    M.A. Ashworth and M.H. Jacobs, Mater. Sci. Tech. 15, 951 (1999).Google Scholar
  11. 11.
    S. Subramanian, D.A. Muller, P.E. Batson, J. Silcox, and S.L. Sass, Mater. Sci. Eng. A 193, 936 (1995).Google Scholar
  12. 12.
    G.C. Wei, in Proc. 10th High-Temperature Materials Chemistry Conference, edited by K. Hilpert, F.W. Froben, and L. Singheiser (Jülich, Germany, 2000), p. 283.Google Scholar
  13. 13.
    M.P. Seah and E.D. Hondros, Proc. Roy. Soc. Lond. A 335, 191 (1973).Google Scholar
  14. 14.
    P. Lejcek and S. Hofmann, Critical Reviews in Solid State and Materials Sciences 20, 1 (1995).Google Scholar
  15. 15.
    N.Y. Jin-Phillipp, W. Sigle, A. Black, D. Babic, J.E. Bowers, E.L. Hu, and M. Rühle, J. Appl. Phys. 89, 1017 (2001).Google Scholar
  16. 16.
    S.C. Hansen and D.S. Phillips, Philos. Mag. A 47, 209 (1983).Google Scholar
  17. 17.
    J.R. Lee, Y.M. Chiang, and G. Ceder, Acta Mater. 45, 1247 (1997).Google Scholar
  18. 18.
    H. Gu, X.Q. Pan, R.M. Cannon, and M. Rühle, J. Am. Ceram.Soc. 81, 3125 (1998).Google Scholar
  19. 19.
    H. Müllejans, W.D. Kaplan, and M. Rühle, Mater. Sci. Forum. 207, 405 (1996).Google Scholar
  20. 20.
    K.L. Gavrilov, S.J. Bennison, K.R. Mikeska, and R. Levi-Setti, Acta Mater. 47, 4031 (1999).Google Scholar
  21. 21.
    K.L. Gavrilov, S.J. Bennison, K.R. Mikeska, J.M. Chabala, and R. Levi-Setti, J. Am. Ceram. Soc. 82, 1001 (1999).Google Scholar
  22. 22.
    R. Brydson, P.C. Twigg, F. Loughran, and F.L. Riley, J. Mater.Res. 16, 652 (2001).Google Scholar
  23. 23.
    R. Brydson, S.C. Chen, F.L. Riley, S.J. Milne, X.Q. Pan, and M. Rühle, J. Am. Ceram. Soc. 81, 369 (1998).Google Scholar
  24. 24.
    C.A. Handwerker, P.A. Morris, and R.L. Coble, J. Am. Ceram.Soc. 72, 130 (1989).Google Scholar
  25. 25.
    P. Gruffel and C. Carry, J. Eur. Ceram. Soc. 11, 189 (1993).Google Scholar
  26. 26.
    S.K. Roy and R.L. Coble, J. Am. Ceram. Soc. 51, 1 (1968).Google Scholar
  27. 27.
    J.D. Cawley and J.W. Halloran, J. Am. Ceram. Soc. 69, C195 (1996).Google Scholar
  28. 28.
    C.M. Wang, G.S. Cargill, H.M. Chan, and M.P. Harmer, Acta Mater. 48, 2579 (2000).Google Scholar
  29. 29.
    K. Gavrilov, S.J. Bennison, K.R. Mikeska, J. Chabala, and R. Levi-Setti, J. Am. Ceram. Soc. 80, 1146 (1997).Google Scholar
  30. 30.
    J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, and J.M. Rickman, J. Am. Ceram. Soc. 82, 2865 (1999).Google Scholar
  31. 31.
    P. Gruffel and C. Carry, J. Eur. Ceram. Soc. 11, 189 (1993).Google Scholar
  32. 32.
    R.L. Coble, Transparent alumina and method of preparation, u.S. Patent 3 026 210, March 1962.Google Scholar
  33. 33.
    J.H. Cho, M.P. Harmer, H.M. Chan, J.M. Rickman, and A.M. Thompson, J. Am. Ceram. Soc. 80, 1013 (1997).Google Scholar
  34. 34.
    J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman, and M.P. Harmer, Acta Mater. 47, 4197 (1999).Google Scholar
  35. 35.
    H. Yoshida, Y. Ikuhara, and T. Sakuma, J. Mater. Res. 13, 2597 (1998).Google Scholar
  36. 36.
    H. Yoshida, Y. Ikuhara, and T. Sakuma, Philos. Mag. Lett. 79, 249 (1999).Google Scholar
  37. 37.
    H. Yoshida, Y. Ikuhara, and T. Sakuma, J. Mater. Res. 16, 716 (2001).Google Scholar
  38. 38.
    Y.Z. Li, C.M. Wang, H.M. Chan, J.M. Rickman, M.P. Harmer, J.M. Chabala, K.L. Gavrilov, and R. Levi-Setti, J. Am. Ceram.Soc. 82, 1497 (1999).Google Scholar
  39. 39.
    H. Yoshida, Y. Ikuhara, and T. Sakuma, in Creep and Fracture of Engineering Materials and Structures, edited by T. Sakuma and K. Yagi,Key Engineering Materials,Vol. 171-174 (Transtec Publications Ltd., uetikon-Zurich, Switzerland, 2000), p. 809.Google Scholar
  40. 40.
    L. Priester, F. Dupau, S. Lartigue-Korinek, and C. Carry, in Interface Science and Materials Interconnection, Proceedings of JIMIS-8 (The Japan Institute of Metals, Sendai, Japan, 1996), p.134.Google Scholar
  41. 41.
    M. Gülgün, V. Putlayev, and M. Rühle, J. Am. Ceram. Soc. 82, 1849 (1999).Google Scholar
  42. 42.
    R.M. Cannon, W.H. Rhodes, and A.H. Heuer, J. Am. Ceram.Soc. 63, 46 (1980).Google Scholar
  43. 43.
    A.H. Heuer, N.J. Tighe, and R.M. Cannon, J. Am. Ceram. Soc. 63, 53 (1980).Google Scholar
  44. 44.
    J.A.S. Ikeda, Y.M. Chiang, A.J. Garratt-Reed, and J.B. Vander Sande, J. Am. Ceram. Soc. 76, 2447 (1993).Google Scholar
  45. 45.
    S. Nufer, Ph.D. Thesis, university of Stuttgart, Stuttgart, Germany 2001, p. 55.Google Scholar
  46. 46.
    U. Alber, H. Müllejans, and M. Rühle, ultramicroscopy 69, 105 (1997).Google Scholar
  47. 47.
    R.F. Egerton, in 50th Ann. Proc. Electron Microsc. Soc. Amer. (San Francisco Press, San Francisco, 1992), p. 1264.Google Scholar
  48. 48.
    J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, Micron 28, 361 (1997).Google Scholar
  49. 49.
    C.J. Howorth, W.E. Lee, W.M. Rainforth, and P.F. Messer, Br. Ceram. Trans. J. 90, 18 (1991).Google Scholar
  50. 50.
    Toyo Soda Mfg. Co. Ltd., Tokyo, Japan.Google Scholar
  51. 51.
    R. Voytovych, M. Gülgün, I. MacLaren, R. Cannon, and M. Rühle, Acta Mater., (2002) in press.Google Scholar
  52. 52.
    C. Pascual and P. Duran, J. Am. Ceram. Soc. 66, 23 (1983).Google Scholar
  53. 53.
    W.D. Tuohig and T.Y. Tien, J. Am. Ceram. Soc. 63, 595 (1980).Google Scholar
  54. 54.
    L.M. Lopato, L.V. Nazarenko, G.I. Gerasimyuk, and A.V. Shevchenko, Izv. Akad. Nauk SSSR Neorg. Mater. 26, 834 (1990) (in Russian); Inorg. Mater. 26, 701 (1990) (Engl. Transl.).Google Scholar
  55. 55.
    D. McLean, Grain Boundaries in Metals (Clarendon Press, Oxford, uK, 1957).Google Scholar
  56. 56.
    S. Fabris and C. Elsässer, in preparation.Google Scholar
  57. 57.
    C.R. Koripella and F.A. Kröger, J. Am. Ceram. Soc. 69, C195 (1986).Google Scholar
  58. 58.
    A.M. Thompson, K.K. Soni, H.M. Chan, M.P. Harmer, D.B. Williams, J.M. Chabala, and R. Levi-Setti, J. Am. Ceram. Soc.80, 373 (1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M.A. Gülgün
    • 1
  • R. Voytovych
    • 1
  • I. Maclaren
    • 1
  • M. Rühle
    • 1
  • R.M. Cannon
    • 2
  1. 1.Max Planck Institut für MetallforschungStuttgartGermany
  2. 2.Evans Hall (MC 1760)Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations