Journal of Chemical Ecology

, Volume 28, Issue 4, pp 835–848 | Cite as

Mimicry of Host Cuticular Hydrocarbons by Salticid Spider Cosmophasis bitaeniata That Preys on Larvae of Tree Ants Oecophylla smaragdina

  • Rachel A. Allan
  • Robert J. Capon
  • W. Vance Brown
  • Mark A. ElgarEmail author


The salticid spider Cosmophasis bitaeniata preys on the larvae of the green tree ant Oecophylla smaragdina. Gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS) reveal that the cuticle of C. bitaeniata mimics the mono- and dimethylalkanes of the cuticle of its prey. Recognition bioassays with extracts of the cuticular hydrocarbons of ants and spiders revealed that foraging major workers did not respond aggressively to the extracts of the spiders or conspecific nestmates, but reacted aggressively to conspecific nonnestmates. Typically, the ants either failed to react (as with control treatments with no extracts) or they reacted nonaggressively as with conspecific nestmates. These data indicate that the qualitative chemical mimicry of ants by C. bitaeniata allows the spiders to avoid detection by major workers of O. smaragdina.

Chemical mimicry cuticular hydrocarbons nestmate recognition inter-specific exploitation predation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akino, T., Mochizuki, R., Morimoto, M., and Yamaoka, R.1996. Chemical camouflage of myrmecophilous cricket Myrmecophilussp. to be integrated with several ant species. Japanese J. Appl. Entomol. Zool.40:39–46.Google Scholar
  2. Akino, T., Knapp, J. J., Thomas, J. A., and Elmes, G.W.1999. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmicaant colonies. Proc. R. Soc. London B266:1419–1426.Google Scholar
  3. Allan, R. A., and Elgar, M. A.2001. Exploitation of the green tree ant Oecophylla smaragdinaby the salticid spider Cosmophasis bitaeniata. Aust. J. Zool.49:129–137.Google Scholar
  4. Allan, R. A., Elgar, M. A., and Capon, R. J.1996. Exploitation of an ant chemical signal by the zodariid spider Habronestes bradleyiWalckenaer. Proc. R. Soc. London B263:69–73.Google Scholar
  5. Bagneres, A.-G., Errard, C., Mulheim, C., Joulie, C., and Lange, C.1991. Induced mimicry of colony odours in ants. J. Chem. Ecol.17:1641–1664.Google Scholar
  6. Bagneres, A.-G., Lorenzi, M. C., Dusticier, G., Turillazzi, S., and CLEMENT, J.-L.1996. Chemical usurpation of a nest by paper wasp parasites. Science272:889–892.Google Scholar
  7. Blum, M. S.1987. Specificity of pheromonal signals: a search for its recognitive bases in terms of a unified chemisociality, pp. 401–405, inJ. Eder and H. Rembold (eds.). Chemistry and Biology of Social Insects. Verlag, Munich. 846 ALLAN, CAPON, BROWN, AND ELGARGoogle Scholar
  8. Bonavita-Cougourdan, A., Clement, J.-L., and Lange, C.1987. Nestmate recognition: The role of cuticular hydrocarbons in the ant Camponotus vagusScop. J. Entomol. Sci.11:1–10.Google Scholar
  9. Bonavita-Cougourdan, A., Clement, J.-L., and Lange, C.1989. The role of cuticular hydrocarbons in recognition of larvae by workers of the ant Camponotus vagus: Changes in the chemical signature in response to social environment (Hymenoptera: Formicidae). Sociobiology16:49–74.Google Scholar
  10. Bonavita-Cougourdan, A., Clement, J.-L., and Lange, C.1993. Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagusScop.: Polymorphism of cuticular hydrocarbon patterns. J. Chem. Ecol.19:1461–1477.Google Scholar
  11. Bonavita-Cougourdan, A., Bagneres, A., Provost, E., Dusticier, G., and Clement, J.-L.1997. Plasticity of the cuticular hydrocarbon profile of the slave-making ant Polyergus rufescensdepending on the social environment. Comp. Biochem. Physiol.116B:287–302.Google Scholar
  12. Breed, M. D., Snyder, L. E., Lynn, T. L., and Morhart, J. A.1992. Acquired chemical camouflage in a tropical ant. Anim. Behav.44:519–523.Google Scholar
  13. Brill, J. H., and Bertsch, W.1985. A novel micro-technique for the analysis of the cuticular hydrocarbons of insects. Insect Biochem.15:49–53.Google Scholar
  14. Cushing, P. E.1997. Myrmecomorphy and myrmecophily in spiders: A review. Fla. Entomol.80:165–193.Google Scholar
  15. Dani, F. R., Morgan, E. D., and Turillazzi, S.1996. Dufor gland secretion ofPolisteswasp: Chemical composition and possible involvement in nestmate recognition (Hymenoptera:Vespidae). J. Insect Physiol.42:541–548.Google Scholar
  16. Dejean, A.1990. Circadian rhythm of Oecophylla longinodain relation to territorality and predatory behaviour. Physiol. Entomol.15:393–403.Google Scholar
  17. Dettner, K., and Liepert, C.1994. Chemical mimicry and camouflage. Annu. Rev. Entomol.39:129–154.Google Scholar
  18. Eisner, T., Hicks, K., Eisner, M., and Robson, D. S.1978. “Wolf-in-sheep'-clothing” strategy of a predaceous insect larva. Science199:790–794.Google Scholar
  19. Elgar, M. A.1993. Inter-specific associations involving spiders. Mem. Qld. Mus.33:411–430.Google Scholar
  20. Elmes, G.W., Barr, B., Thomas, J. A., and Clarke, R. T.1999. Extreme host specificity by Microdon mutabilis(Diptera: Syrphidae), a social parasite of ants. Proc. R. Soc. London B266:447–453.Google Scholar
  21. Feener, D. H. J.1995. Headless hosts, legless guests. Nature378:129.Google Scholar
  22. Franks, N., Blum, M., Smith, R. K., and Allies, A. B.1990. Behaviour and chemical disguise of cuckoo ant Leptothorax kutteriin relation to its host Leptothorax acervorum. J. Chem. Ecol.16:1431–1444.Google Scholar
  23. Garnett, W. B., Akre, R. D., and Sehlke, G.1985. Cocoon mimicry and predation by myrmecophilous diptera (Diptera: Syrphidae). Fla. Entomol.68:615–621.Google Scholar
  24. Habersetzer, C.1993. Cuticular spectra and inter-individual recognition in the slave-making ant Polyergus rufescensand the slave species Formica rufibarbis. Physiol. Entomol.18:167–175.Google Scholar
  25. Haverty, M. I., Grace, J. K., Nelson, L. J., and Yamamoto, R. T.1996. Intercaste, intercolony and temporal variation in cuticular hydrocarbons of Coptotermes formosanusShiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol.22:1813–1834.Google Scholar
  26. Haynes, K. F., and Yeargan, K. V.1999. Exploitation of intraspecific communication systems: Illicit signalers and receivers. Ann. Entomol. Soc. Am. 92:960–970.Google Scholar
  27. Hefetz, A., Errard, C., Chambris, A., and Lenegrate, A.1996. Postpharyngeal gland secretion as a modifier of aggressive behavior in the myrmicine ant Manica rubida. J. Insect Behav.9:709–717.Google Scholar
  28. Henderson, G., Anderson, J. F., Phillips, J. L., and Jeanne, R. L.1990. Internest aggression and identification of possible nestmate discrimination pheromones in polygynous ant Formica montana. J. Chem. Ecol.16:2217–2227.Google Scholar
  29. HÖlldobler, B.1971. Communication between ants and their guests. Sci. Am.224:86–93.Google Scholar
  30. HÖlldobler, B.1983. Territorial behaviour in the green tree ant (Oecophylla smaragdina). Biotropica15:241–250. HYDROCARBON MIMICRY BY SPIDERS 847Google Scholar
  31. HÖlldobler, B., and Wilson, E. O.1978. The multiple recruitment systems of the African weaver ant Oecophylla longioda(Lareille) (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol.3:19–60.Google Scholar
  32. HÖlldobler, B., and Wilson, E. O.1990. The Ants. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  33. Howard, R. W.1992. Comparative analysis of cuticular hydrocarbons from the ectoparasitoids Cephalonomia waterstoniand Laelius utilis(Hymenoptera, Bethylidae) and their respective hosts, Cryptolestes ferrugineus(Coleoptera, Cucujidae) and Trogoderma variabile(Coleoptera, Dermestidae) Ann. Entomol. Soc. Am.85:317–325.Google Scholar
  34. Howard, R. W., and Infante, F.1996. Cuticular hydrocarbons of the host-specific ectoparasitoid Cephalonomia stephanoderis(Hymenoptera, Bethylidae) and its host the coffee berry borer (Coleoptera, Scolytidae). Ann. Entomol. Soc. Am.89:700–709.Google Scholar
  35. Howard, R. W., McDaniel, C. A., and Blomquist, G. C.1980. Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science210:431–433.Google Scholar
  36. Howard, R. W., McDaniel, C. A., Nelson, D. R., Blomquist, G. J., Gelbaum, L. T., and Zalkow, L. H.1982. Cuticular hydrocarbons of Reticulitermes virginicus(Banks) and their role as potential species-and caste-recognition cues. J. Chem. Ecol.8:1227–1239.Google Scholar
  37. Howard, R. W., Akre, R. D., and Garnett, W. B.1990a. Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am.83:607–616.Google Scholar
  38. Howard, R. W., Stanley-Samuelson, D. V., and Akre, R. D.1990b. Biosynthesis and chemical mimicry of cuticular hydrocarbons from the obligate predator, Microdon albicomatusNovak (Diptera: Syrphidae) and its ant prey, Myrmica incompletaProvancher (Hymenoptera: Formicidae). J. Kans. Entomol. Soc.63:437–443.Google Scholar
  39. Jaffe, K.1983. Chemical communication among workers of the leaf-cutting ant Atta cephalotes, pp. 165–180, inP. Jaisson (ed.). Social Insects in the Tropics, Vol. 2. University of Paris, Paris, France.Google Scholar
  40. Jaisson, R. D.1991. Kinship and fellowship in ants and social wasps, pp. 60–93, inP. G. Hepper (ed.). Kin Recognition. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  41. Kaib, M., Heinze, J., and Ortius, D.1993. Cuticular hydrocarbon profiles in the slave-making ant Harpagoxenus sublaevisand its hosts. Naturwissenschaften80:281–285.Google Scholar
  42. Keegans, S. J., Billen, J., and Morgan, E.D.1991.Volatile secretions of the green tree ant Oecophylla smaragdina(Hymenoptera: Formicidae). Comp. Biochem. Physiol.100B:681–685.Google Scholar
  43. Kistner, D. H.1979. Social and evolutionary significance of social insect symbionts, pp. 339–413, inH. R. Hermann (ed.). Social Insects, Vol. 1. Academic Press, London.Google Scholar
  44. Lenoir, A., D'Ettorre, P., Errard, C., and Hefetz, A.2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol46:573–599.Google Scholar
  45. Liepert, C., and Dettner, K.1993. Recognition of aphid parasitoids by honeydew-collecting ants: The role of cuticular lipids in a chemical mimicry system. J. Chem. Ecol.19:2143–2153.Google Scholar
  46. Liepert, C., and Dettner, K.1996. Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. J. Chem. Ecol.22:695–707.Google Scholar
  47. Lockey, K. H.1988. Lipids of the insect cuticle: Origin, composition and function. Comp. Biochem. Physiol.89B:595–645.Google Scholar
  48. Lokkers, C.1986. The distribution of the weaver ant, Oecophylla smaragdina(Fabricius) (Hymenoptera: Formicidae) in northern Australia. Aust. J. Zool.34:683–687.Google Scholar
  49. Lokkers, C.1990. Colony Dynamics of the green tree ant (Oecophylla smaragdina) in a seasonal tropical climate. PhD thesis. James Cook University, Queensland.Google Scholar
  50. Morel, L., Vander Meer, R. K., and Lavine, B. K.1988. Ontogeny of nestmate recognitiion cues in the red carpenter ant (Camponotus floridanus). Behav. Ecol. Sociobiol.22:175–183.Google Scholar
  51. Moritz, R. F. A., Kirchner, W. H., and Crewe, R. M.1991. Chemical camouflage of the death' head hawkmoth (Acherontia atropos L.) in honeybee colonies. Naturwissenchaften78:179–182. 848 ALLAN, CAPON, BROWN, AND ELGARGoogle Scholar
  52. Provost, E., Riviere, G., Roux, M., Bagneres, A. G., and Clement, J. L.1994. Cuticular hydrocarbons whereby Messor barbarusant workers putatively discriminate between monogynous and polygynous colonies. Are workers labeled by queens? J. Chem. Ecol.20:2985–3003.Google Scholar
  53. Smith, B. H., and Breed, M. D.1995. The chemical basis for nest-mate recognition and mate discrimination in social insects, pp. 287–317, inR. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects 2. Chapman and Hall, London.Google Scholar
  54. Soroker, V., Vienne, C., and Hefetz, A.1994. The postpharyngeal gland as a “Gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften81:510–513.Google Scholar
  55. Su, N.-Y., and Haverty, M.1991. Agonistic behaviour among colonies of the Formosan subterraenean termite, Coptotermes formosanusShiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: Lack of correlation with cuticular hydrocarbon composition. J. Insect Behav.4:115–128.Google Scholar
  56. Takahashi, S., and Gassa, M.1995. Roles of cuticular hydrocarbons in intra-and interspecific recognition behaviour of two Rhinotermitidae. J. Chem. Ecol.21:1837–1845.Google Scholar
  57. Thomas, M. L., Parry, L. J., Allan, R. A., and Elgar, M. A.1999. Colony recognition in Australian meat ants Iridomyrmex purpureus. Naturwissenchaften86:87–92.Google Scholar
  58. Vander Meer, R. J., and Wojcik, D. P.1982. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science218:806–808.Google Scholar
  59. Vander Meer, R. K., Jouvenaz, D. P., and Wojcik, D. P.1989. Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). J. Chem. Ecol.15:2247–2261.Google Scholar
  60. Vauchot, B., Provost, E., Bagneres, A. G., and Clement, J. L.1996. Regulation of the chemical signatures of two termite species, Reticulitermes santonensisand Reticulitermes lucifugus grassei, living in mixed experimental colonies. J. Insect Physiol.42:309–321.Google Scholar
  61. Vauchot, B., Provost, E., Bagneres, A. G., Riviere, G., Roux, M., and Clement, J. L.1998. Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensisand R. lucifugus grassei, living in a mixed colony. J. Insect Physiol.44:59–66.Google Scholar
  62. VÖlkl, W.1995. Behavioral and morphological adaptations of the coccinellid, Platynaspis luteorubrafor exploiting ant-antended resources (Coleoptera: Coccinellidae). J. Insect Behav.8:653–670.Google Scholar
  63. VÖlkl, W., and Mackauer, M.1993. Interactions between ants attending Aphis fabaessp. cirsiiacanthoidison thistles and foraging parasitoid wasps. J. Insect Behav.6:301–312.Google Scholar
  64. VÖlkl, W., Liepert, C., Birnbach, R., Hubner, G., and Dettner, K.1996. Chemical and tactile communication between the root aphid parasitoid Paralipsis enervisand trophobiotic ants: Consequences for parasitoid survival. Experientia52:731–738.Google Scholar
  65. Way, M. J.1954. Studies of the life history and ecology of the ant Oecophylla longinodaLatreille. Bull. Entomol. Res.45:93–112.Google Scholar
  66. Weissflog, A., Maschwitz, U., Disney, R. H. L., and Rosciszewski, K.1995. A fly' ultimate con. Nature378:137.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Rachel A. Allan
    • 1
  • Robert J. Capon
    • 2
  • W. Vance Brown
    • 3
  • Mark A. Elgar
    • 1
    Email author
  1. 1.Department of ZoologyUniversity of MelbourneParkvilleAustralia
  2. 2.Department of ChemistryUniversity of MelbourneParkville
  3. 3.CSIRO EntomologyCanberraAustralia

Personalised recommendations