Molecular Breeding

, Volume 8, Issue 4, pp 323–333 | Cite as

High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize

  • Zuo-yu Zhao
  • Weining Gu
  • Tishu Cai
  • Laura Tagliani
  • David Hondred
  • Diane Bond
  • Sheryl Schroeder
  • Marjorie Rudert
  • Dottie Pierce
Article

Abstract

A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml−1 for bacterium inoculation; 100 mg l−1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.

Agrobacterium tumefaciens Corn Genetic engineering Maize Transformation Transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An G., Mitra A., Choi H.K., Costa M.A., An K., Thornburg R.W. and Ryan C.A.: 1989. Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1: 115–122.Google Scholar
  2. Armstrong C.L., Green C.E. and Phillips R.L.: 1991. Development and availability of germplasm with high Type II culture formation response. Maize Gen. Coop. Newsl. 65: 92–93.Google Scholar
  3. Boase M.R., Bradley J.M. and Borst N.K.: 1998. An improved method for transformation of regal pelargonium (Pelargonium Xdomesticum Dubonnet) by Agrobacterium. Plant Science 139: 59–69.Google Scholar
  4. Boulton M.I., Buchholz W.G., Marks M.S., Markham P.G. and Davies J.W.: 1989. Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol. Biol. 12: 31–40.Google Scholar
  5. Cao X., Liu Q., Rowland L.J. and Hammerschlag F.A.: 1998. GUS expression in blueberry (Vaccinium ssp.): factors influencing Agrobacterium-mediated gene transfer efficiency. Plant Cell Rep. 18: 266–270.Google Scholar
  6. Cervera M., Pina J.A., Juarez J., Navarro L. and Pena L.: 1998. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep. 18: 271–278.Google Scholar
  7. Chalfie M., Tu Yuan, Euskirchen G., Ward W.W. and Prasher D.C.: 1994. Green fluorecent protein as a marker for gene expression. Science 263: 802–805.Google Scholar
  8. Chan M.T., Chang H.H., Ho S.L., Tong W.F. and Yu S.M.: 1993.Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22: 491–506.Google Scholar
  9. Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C.M., Duncan D.R., Conner T.W. and Wan Y.: 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971–980.Google Scholar
  10. Christensen A.H., Sharrock R.A. and Quail P.H.: 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689.Google Scholar
  11. Chu C.C. Wang C.C., Sun C.S., Hsu C., Yin K.C., Chu C.Y. and Bi F.Y.: 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18: 659–668.Google Scholar
  12. Dennis E.S., Gerlach W.L., Pryor A.J., Bennetzen J.L., Inglis A., Llewellyn D., Sachs M M., Ferl R.J. and Peacocl W.J.: 1984. Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucl. Acids Res. 12: 3983–3990.Google Scholar
  13. Feinberg A.P. and Vogelstein B.: 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.Google Scholar
  14. Feinberg A.P. and Vogelstein B.: 1984. Addendum: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137: 266–267.Google Scholar
  15. Gallie D.R., Sleat D.E., Watts J.W., Turner P.C. and Wilson T.M.A.: 1987. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl. Acids Res. 15: 3257–3273.Google Scholar
  16. Gardner R.C., Howarth A.J., Hahn P., Brown-Luedi M., Shepherd R. and Messing J.: 1981. The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucl. Acids Res. 9: 2871–2888.Google Scholar
  17. Gordon-Kamm W.J., Spencer T.M., Mangano, M.L., Adams T.R., Daines R.J., Start W.G., O'Brien J.V., Chambers S.A., Adams W.R. Jr., Willetts N.G., Rice T.B., Mackey C.J., Krueger R.W., Kausch A.P. and Lemaux P.G.: 1990. Transformation of maize cell and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.Google Scholar
  18. Grimsley N., Hohn T., Davies J.W. and Hohn B.: 1987. Agrobacterium-mediated delivery of infectious maize strak virus into maize plants. Nature 325: 177–179.Google Scholar
  19. Guo G., Maiwald F., Lorenzen P. and Steinbiss H.: 1998. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Res. Commun. 26: 15–22.Google Scholar
  20. Harper B.K., Mabon S.A., Leffel S.M., Halfhill M.D., Richards H.A., Moyer K.A. and Stewart C.N. Jr.: 1999. Green fluorecent protein as a marker for expression of a second gene in transgenic plants. Nat. Biotechnol. 17: 1125–1129.Google Scholar
  21. Hiei Y., Ohta S., Komari T. and Kumasho T.: 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.Google Scholar
  22. Holford P. and Newbury H.J.: 1992. The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Rep. 11: 93–96.Google Scholar
  23. Ishida Y., Saito H., Ohta S., Hiei Y., Komari T. and Kumashiro T: 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14: 745–750.Google Scholar
  24. Iyer L.M., Kumpatla S.P., Chandrasekharan M.B. and Hall T.C.: 2000. Transgene silencing in monocots. Plant Mol. Biol. 43: 323–346.Google Scholar
  25. Jefferson R.A., Burgess S.M. and Hirsh D.: 1986. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83: 8447–8451.Google Scholar
  26. Johnson D.A., Gautsch J.W., Sprotsman J.R. and Elder J.H.: 1984. Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal. Tech. 1: 3.Google Scholar
  27. Komari T.: 1990. Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9: 303–306.Google Scholar
  28. Komari T., Hiei Y., Saito Y., Murai N. and Kumashiro T.: 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165–174.Google Scholar
  29. Kramer M.F. and Coen D.M.: 1997. Enzymatic amplification of DNA by PCR: Standard procedures and optimization. In: Ausubel F., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. and Struhl K. (eds) Short Protocols inMolecular Biology, 3rd edition, pp. 15–3, 15-5. John Wiley & Sons, Inc., New York.Google Scholar
  30. Labarca C. and Paigen K.: 1980. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102: 344–352.Google Scholar
  31. Lin J.J., Assad-Garcia N. and Kuo J.: 1995. Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Sci. 109: 171–177.Google Scholar
  32. Ludwing S.R., Bowen B., Beach L. and Wessler S.R.: 1990. A refulatory gene as a novel visible marker for maize transformation. Science 247: 449–450.Google Scholar
  33. Mathias R.J. and Boyd L.A.: 1986. Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L EM. Thell). Plant Sci. 46: 217–223.Google Scholar
  34. McCabe D.E., Swain W.F., Martinell B.J. and Christou P.: 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Biotechnology 6: 923–926.Google Scholar
  35. O'Kennedy M.M., Burger J.T. and Watson T.G.: 1998. Stable transformation of Hi-II maize using the particle inflow gun. South Afr. J. Sci. 94: 188–192.Google Scholar
  36. Pollock K., Barfield D.G. and Shields R.: 1983. The toxicity of antibiotics to plant cell cultures. Plant Cell Rep. 2: 36–39.Google Scholar
  37. Potrykus I.: 1990. Gene transfer to cereals: an assessment. Biotechnology 8: 535–543.Google Scholar
  38. Richards E.J.: 1997. Preparation of plant DNA using CTAB. In: Ausubel F., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. and Struhl K. (eds), Short Protocols in Molecular Biology, 3rd edition. John Wiley & Sons, Inc., New York, pp. 2–10, 2-11.Google Scholar
  39. Sangwan R.S., Bourgeois Y. and Sangwan-Norreel B.S.: 1991. Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol. Gen. Genet. 230: 475–485.Google Scholar
  40. Schlappi M. and Hohn B.: 1992. Comperence of immature maize embryos for Agrobacterium-mediated gene transfer. The Plant Cell 4: 7–16.Google Scholar
  41. Shackelford N.J. and Chlan C.A.: 1996. Identification of antibiotics that are effective in eliminating Agrobacterium tumefaciens. Plant Mol. Biol. Reporter 14: 50–57.Google Scholar
  42. Shen W.H., Escudero J., Schlappi M., Ramos C., Hohn B. and Koukolikova-Nicola Z.: 1993. T-DNA transfer to maize cells: Histochemical investigation of β-glucuronidase activity in maize tissues. Proc. Natl. Acad. Sci. USA 90: 1488–1492.Google Scholar
  43. Songstad D.D., Armstrong C.L. and Peterson W.L.: 1991. AgNO3 increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep. 9: 699–702.Google Scholar
  44. Songstad D.D., Armstrong C.L., Peterson W.L., Hairston B. and Hinchee M.A.W.: 1996. Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell Dev. Biol. Plant 32: 179–183.Google Scholar
  45. Southgate E.M., Davey M.R., Power J.B. and Westcott R.J.: 1998. A comparison of methods for direct gene transfer into maize (Zea mays L.). In Vitro Cell Dev. Biol. Plant 34: 218–224.Google Scholar
  46. Thompson C., Movva N.R., Tizard R., Crameri R., Davies J.E., Lauwereys M. and Botterman J.: 1987. Characterization of the herbicide-resistance gene bar from streptomyces hygroscopicus. EMBO J. 6: 2519–2523.Google Scholar
  47. Tingay S., McElroy D., Kalla R., Fieg S., Wang M., Thornton S. and Brettell R.: 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369–1376.Google Scholar
  48. Tinland B.: 1997. The Integration of T-DNA into plant genomes. Trans. Plant Sci. 1 (6): 178–184.Google Scholar
  49. Vancanneyt G., Schmidt R., O'Connor-Sanchez A., Willmitzer L. and Rocha-Sosa M.: 1990. Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250.Google Scholar
  50. Vergauwe A., Geldre E. Van, Inze D., Montagu M. Van and Eeckhout E. Van den: 1998. Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. Plant Cell Rep. 18: 105–110.Google Scholar
  51. Wolin M.J.: 1979. Physical agents, bactericidal substances (disinfectants), and chemotherapeutic drugs. In: Freeman B.A. (ed.), Burrows Textbook of Microbiology, 21 edition. W.B. Saunders Company, Philadelphia, pp. 121–156.Google Scholar
  52. Zhao Z.Y., Cai T., Tagliani L., Miller M., Wang N., Pang H., Rudert M., Schroeder S., Hondred D., Seltzer J. and Pierce D.: 2000. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44: 789–798.Google Scholar
  53. Zhong G.Y., Peterson D., Delaney D.E., Bailey M., Witcher D.R., Register III J.C., Bond D., Li C.P., Marshall L., Kulisek E., Ritland D., Meyer T., Hood E.E. and Howard J.A.: 1999. Commercial production of aprotinin in transgenic maize seeds. Molec. Breeding 5: 345–356.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Zuo-yu Zhao
    • 1
  • Weining Gu
    • 2
  • Tishu Cai
    • 3
  • Laura Tagliani
    • 4
  • David Hondred
    • 5
  • Diane Bond
    • 6
  • Sheryl Schroeder
    • 5
  • Marjorie Rudert
    • 5
  • Dottie Pierce
    • 7
  1. 1.Trait and Technology DevelopmentPioneer Hi-Bred International, Inc., A DuPont CompanyJohnstonUSA
  2. 2.SyngentaResearch Triangle ParkUSA
  3. 3.MonsantoSt. LouisUSA
  4. 4.Dow AgroSciences LLCIndianapolisUSA
  5. 5.Trait and Technology DevelopmentPioneer Hi-Bred International, Inc., A DuPont CompanyJohnstonUSA
  6. 6.PE BiosystemsFoster CityUSA
  7. 7.SyngentaSan DiegoUSA

Personalised recommendations