Journal of Chemical Ecology

, Volume 28, Issue 4, pp 783–795 | Cite as

Influence of MHC on Sibling Discrimination in Arctic Char, Salvelinus alpinus (L.)

Article

Abstract

The preference of juvenile Arctic char [Salvelinus alpinus (L.)] for odors from siblings and nonsiblings with different major histocompability complex class II (MHC) genotypes was studied in two-choice fluviarium tests. In the first part of the study, test fish demonstrated no preference for water scented by a sibling with a MHC genotype different from its own versus water scented by a MHC identical nonsibling. When both donors were siblings with different MHC genotypes, however, the test fish chose the water scented by the fish with the same MHC type as the test fish. The results suggest that odors with information about kinship are dependent on MHC but also on other, unknown factors. In the second part of the study, we observed that fish isolated since fertilization did not show any behavioral discrimination towards siblings, based on MHC genotype. One reasonable explanation for this result is that Arctic char learn to discriminate between odors from individuals of different MHC types.

Arctic char fish chemical signals MHC kin discrimination siblings odors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Beauchamp, G. K., Yamazaki, K., Bard, J., and Boyse, E. A.1988. Preweaning experience in the control of mating preference by genes in the major histocompatibility complex of the mouse. Behav. Genet.18:537–547.Google Scholar
  2. Bjerselius, R., OlsÉn, K. H., and Zheng, W.1995. Endocrine, gonadal and behavioral responses of male crucian carp to the hormonal pheromone 17α20β-dihydroxy-4-pregnen-3-one. Chem. Senses20:221–230.Google Scholar
  3. Bone, Q., Marshall, N. B., and Blaxter, J. H. S.1995. Biology of Fishes. Chapman and Hall, London.Google Scholar
  4. Boyse, E. A., Beauchamp, G. K., Bard, J., and Yamazaki, K.1991. Behavior and the major histocompatibility complex of the mouse, pp. 831–846, inR. Ader, D. L. Felten, and N. Cohen (eds.). Psychoneuroimmunology. Academic Press, New York.Google Scholar
  5. Brown, G. E., and Brown, J. A.1993a. Do kin always make better neighbours? Behav. Ecol. Sociobiol.33:225–231.Google Scholar
  6. Brown, G. E., and Brown, J. A.1993b. Social dynamics in salmonid fishes: Do kin make better neighbours? Anim. Behav. 45:863–871.Google Scholar
  7. Brown, G. E., and Brown, J. A.1996. Does kin-biased territorial behaviour increase kin-biased foraging in juvenile salmonids? Behav. Ecol. 7:24–29.Google Scholar
  8. Brown, R. E., Roser, B., and Singh, P.B.1989. Class I and class II regions of the MHC both contribute to individual odors in congenic inbred strains of rats. Behav. Genet. 19:659–674.Google Scholar
  9. Brown, G. E., Brown, J. A., and Crosbie, A. M.1993. Phenotype matching in juvenile rainbow trout. Anim. Behav. 46:1223–1225.Google Scholar
  10. Brown, R. E., Schellinck H. M., and West, A. M.1996. The influence of dietary and genetic cues on the ability of rats to discriminate between the urinary odors of MHC-congenic mice. Physiol. Behav. 60:365–372.Google Scholar
  11. Eggert, F.(ed.). 1999. MHC and behaviour. Genetica104:189–309 (Special issue MHC and Behavior).Google Scholar
  12. Eggert, F., HÖller, C., Luszyk, D., Muller-Ruchholtz, W., and Ferstl, R.1996. MHC-associated and MHC-independent urinary chemosignals in mice. Physiol. Behav. 59:57–62.Google Scholar
  13. Fischer, S., and Lerman, L. S.1983. DNA fragments differing by single basepair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proceed. Natl. Acad. Sci. USA80:1579–1583.Google Scholar
  14. Fletcher, D. J. C., and Michener, C. D.1987. Kin Recognition in Animals. John Wiley & Sons, Chichester, United Kingdom.Google Scholar
  15. Gardner, E. J., Simmons, M. J., and Snustad, D. P.1991. Principal of Genetics, 8th edn. John Wiley & Sons, New York.Google Scholar
  16. Hamilton, W. D.1964. The genetical evolution of social behaviour. I, II. J. Theor. Biol. 7:1–52.Google Scholar
  17. Hepper, P. G.1991. Kin Recognition. Cambridge University Press, Cambridge.Google Scholar
  18. HÖglund, L. B.1961. The reaction of fish in concentration gradients. Rep. Inst. Freshw. Res. Drottningholm43:1–147.Google Scholar
  19. Hordvik, I., Grimholt, U., Fosse, V. M., Lie, ø., and Andresen, C.1993. Cloning and sequence analysis of cDNAs encoding the MHC class II B-chain in Atlantic salmon, Salmo salar. Immunogenetics37:439–443.Google Scholar
  20. Klein, J.1986. Natural History of the Major Histocompatibility Complex. John Wiley & Sons, New York.Google Scholar
  21. Knapp, L. A., Cadavid, L. F., Eberle, M. E., Knecthle, S. J., Bontrop, R. E., and Watkins, D. I.1997. Identification of new mamu-DRB alleles using DGGE and direct sequencing. Immunogenetics45:171–179.Google Scholar
  22. Laird, P. W., Zijderveld, A., Linders, K., Rudnicki, M. A., Jaenisch, R., and Berns, A.1991. Simplified mammalian DNA isolation procedure. Nucleic Acids Res.19:4293.Google Scholar
  23. Langefors, Å., Lohm, J., Von Schantz, T., and Grahn, M.2000. Screening of MHC variation in Atlantic salmon (Salmo salar): A comparison of restriction fragment length polymorphism (RFLP), denaturing gradient gel electrophoresis (DGGE) and sequencing. Mol. Ecol.9: 215–219.Google Scholar
  24. Lennington, S., Egid, K., and Williams, J.1988. Analysis of a genetic recognition system in wild house mice. Behav. Genet. 18:549–564.Google Scholar
  25. Lewis, K.1998. Pathogen resistance as the origin of kin altruism. J. Theor. Biol. 193:359–363.Google Scholar
  26. Manning, C. J., Wakeland, E. K., and Potts, W. K.1992. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature360:581–583.Google Scholar
  27. Moore, A., Ives, M. J., and Kell, L. T.1994. The role of urine in sibling recognition in Atlantic salmon Salmo salar(L.) parr. Proc. R. Soc. London Ser. B.255:173–180.Google Scholar
  28. Myers, R. M., Maniatis, T., and LERMAN, L. S.1987. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501–527.Google Scholar
  29. OlsÉn, K. H.1986. Chemoattraction between juveniles of two sympatric stocks of Arctic char (Salvelinus alpinus(L.)). J. Fish Biol.28:221–231.Google Scholar
  30. OlsÉn, K. H.1987. Chemoattraction of juvenile Arctic char, Salvelinus alpinus(L.), to water scented by conspecific intestinal content and urine. Comp. Biochem. Physiol.87A:641–643.Google Scholar
  31. OlsÉn, K. H.1989. Sibling recognition in juvenile Arctic char, Salvelinus alpinus(L.). J. Fish Biol. 34:571–581.Google Scholar
  32. OlsÉn, K. H.1992. Kin recognition in fish mediated by chemical cues, pp. 229–248, inT. J. Hara (ed.). Fish Chemoreception. Chapman & Hall, London.Google Scholar
  33. OlsÉn, K. H., and HÖglund, L. B.1985. Reduction by a surfactant of olfactory mediated attraction between juveniles of Arctic char (Salvelinus alpinus(L.)). Acuat. Toxicol. 6:57–69.Google Scholar
  34. OlsÉn, K. H., and JÄrvi, T.1997. Effects of kinship on aggressiveness and RNA content in juvenile Arctic char, Salvelinus alpinus(L.). J. Fish Biol.51:422–435.Google Scholar
  35. OlsÉn, K. H., and Winberg, S.1996. Learning and sibling odor preference in juvenile Arctic char, Salvelinus alpinus(L.). J. Chem. Ecol.22:773–786.Google Scholar
  36. OlsÉn, K. H., JÄrvi, T., and LÖf, A.-C.1996. Aggressiveness and kinship in brown trout (Salmo trutta) parr. Behav. Ecol.7:445–450.Google Scholar
  37. OlsÉn, K. H., Grahn, M., Lohm, J., and Langefors, Å.1998. MHC and kin discrimination in juvenile Arctic char, Salvelinus alpinus(L.). Anim. Behav. 56:319–327.Google Scholar
  38. Penn, D., and Potts, W.1998a. MHC-disassortative mating preferences reversed by cross-fostering. Proc. R. Soc. London Ser. B.265:1299–1306.Google Scholar
  39. Penn, D., and Potts, W. K.1998b. Chemical signals and parasite-mediated sexual selection. TREE13:391–396.Google Scholar
  40. Potts, W. K., Manning, C. J., and Wakeland, E.K.1991. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature352:619–621.Google Scholar
  41. Quinn, T. P., and Busack, C. A.1985. Chemosensory recognition of siblings in juvenile coho salmon (Oncorhynchus kisutch). Anim. Behav.33:51–56.Google Scholar
  42. Ringelberg, J., and Van Gool, E.1998. Do bacteria, not fish, produce “fish kairomone”? J. Plankt. Res. 20:1847–1852.Google Scholar
  43. Sato, A., Figueroa, F., Murray, B. W., MÁlaga-Trillo, E., Zaleska-Rutczynska, Z., Sultmann, H., Toyosawa, S., Wedekind, C., Steck, N., and Klein, J.2000. Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics51:108–116.Google Scholar
  44. Schellinck, H. M., Monahan, E., Brown, R. E., and Maxson, S. C.1993. A comparison of the contribution of the major histocomaptibility complex (MHC) and Y chromosomes to the discriminability of individual urine odors of mice by Long-Evans rats. Behav. Genet.23: 257–263.Google Scholar
  45. Schellink, H. M., Slotnick, B. M., and Brown, R. E.1997. Odors of individuality originating from the major histocompatibility complex are masked by diet cues in the urine of rats. Anim. Learn. Behav.25:193–199.Google Scholar
  46. Singh, P. B., Brown, R. E., and Roser, B.1987. MHC antigens in urine as olfactory recognition cues. Nature327:161.Google Scholar
  47. Singh, P. B., Brown, R. E., and Roser, B.1988. Class I transplantation antigens in solution in body fluids and in the urine. Individuality signals to the environment. J. Exp. Med.168:195–211.Google Scholar
  48. Singh, P. B., Herbert, J., Roser, B., Arnott, L., Tucker, D. K., and Brown, R. E.1990. Rearing rats in a germ-free environment eliminates their odors of individuality. J. Chem. Ecol. 16:1667–1682.Google Scholar
  49. Waldman, B.1987. Mechanisms of kin recognition. J. Theor. Biol. 128:159–185.Google Scholar
  50. Waldman, B.1991. Kin recognition in amphibians, pp. 162–219, inP. G. Hepper (ed.). Kin Recognition. Cambridge University Press, Cambridge.Google Scholar
  51. Wilson, E. O.1975. Sociobiology. The New Thesis. Belknap Press, Cambridge, Massachusetts.Google Scholar
  52. Winberg, S., and OlsÉn, K. H.1992. The influence on sibling odour preference of juvenile Arctic char, Salvelinus alpinusL. Anim. Behav. 44:157–164.Google Scholar
  53. Yamazaki, K., Boyse, E. A., MikÉ, V., Thaler, H. T., Mathieson, B. J., Abbott, J., Boyse, J., Zayas, Z. A., and Thomas, L.1976. Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med.144:1324–1335.Google Scholar
  54. Yamazaki, K., Yamaguchi, M., Baranoski, L., Bard, J., Boyse, E. A., and Thomas, L.1979. Recognition among mice. Evidence from the use of a Y-maze differentially scented by congenic mice of different major histocompatibility types. J. Exp. Med. 150:755–760.Google Scholar
  55. Zavazava, N., and Eggert, F.1997. MHC and behavior. Trends Immunol. Today18:8–10.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Department of Environmental Toxicology, EBCUppsala UniversityUppsalaSweden
  2. 2.Department of Biosciences at Novum, Karolinska InstitutetUniversity College SödertörnSweden
  3. 3.Molecular Population Biology Laboratory, Department of Animal EcologyLund UniversitySweden

Personalised recommendations