Journal of Sol-Gel Science and Technology

, Volume 24, Issue 2, pp 121–129 | Cite as

Synthesis and Properties of Perfluoroalkyl Groups Containing Double Four-Ring Spherosilicate (Siloxysilsesquioxane) Precursors

  • Dagobert Hoebbel
  • Christine Weber
  • Helmut Schmidt
  • Ralph-Peter Krüger


Organically modified cage-like double four-ring spherosilicates have received considerable interest in the construction of nanosized hybrid materials, as well as building units for structural well-defined polymers. This group is extended by perfluoroalkyl ligands containing spherosilicates, synthesized by addition reaction of the octahydridodimethylsiloxyoctasilsesquioxane [H(CH3)2Si]8Si8O20 and heptadecafluorodecyl methacrylate. The resultant liquid spherosilicate substituted with eight terminal perfluoroalkyl groups was characterized by 29Si and 13C NMR spectroscopies and MALDI Time-of-Flight mass spectrometry. Partial substitution of perfluoroalkyl ligands by trimethoxysilyl containing groups provides condensable precursors for the synthesis of hydrophobic and oleophobic materials via the sol-gel process. This new spherosilicate, carrying on average four perfluoroalkyl groups and four trimethoxysilyl groups shows better hydrophobic and oleophobic properties compared with commonly used perfluoroalkyltrialkoxysilanes under identical concentration of perfluoroalkyl chains. In addition a comprehensive literature survey is given on structural well characterized, organically modified cage-like double four-ring spherosilicates.

spherosilicate siloxysilsesquioxane perfluoroalkylalkoxysilane 29Si NMR coatings hydrophobicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Hoebbel and W. Wieker, Z. Anorg. Allg. Chem. 384, 43 (1971).Google Scholar
  2. 2.
    G. Calzaferri, in Tailor-Made Silicon-Oxygen Compounds. From Molecules to Materials, edited by R. Corriu and P. Jutzi (Vieweg, 1996), p. 149.Google Scholar
  3. 3.
    P.G. Harrison, J. Organomet. Chem. 542, 141 (1997).Google Scholar
  4. 4.
    D. Hoebbel, I. Pitsch, W. Hiller, S. Dathe, E. Popowski, G. Sonnek,T. Reiher,H. Jancke, and U. Scheim, European Patent 0348 705, 1989.Google Scholar
  5. 5.
    R. Weidner, N. Zeller, B. Deubzer, and V. Frey, U.S. Patent 5,047,492, 1991.Google Scholar
  6. 6.
    P. Spes, M. Heβling, F.H. Kreuzer, and C. Freyer, DE Patent 40 08 076, 1991.Google Scholar
  7. 7.
    Y.I. Smolin, F. Shepelev, and R. Pomes, in Khim. Silik. Oksidov (Nauka, Leningrad, 1982) p. 68.Google Scholar
  8. 8.
    P.A. Agaskar, Inorg. Chem. 29, 1603 (1990).Google Scholar
  9. 9.
    C. Bonhomme, F. Babonneau, J. Maquet, C. Zhang, R. Baranwal, and R.M. Laine, Mat. Res. Soc. Symp. Proc. 435, 437 (1996).Google Scholar
  10. 10.
    N. Auner, B. Ziemer, B. Herrschaft, W. Ziche, P. John, and J. Weis, Eur. J. Inorg. Chem. 1087 (1999).Google Scholar
  11. 11.
    I. Pitsch, D. Hoebbel, H. Jancke, and W. Hiller, Z. Anorg. Allg. Chem. 596, 63 (1991).Google Scholar
  12. 12.
    I. Hasegawa, Synth. React. Inorg. Met.-Org. Chem. 24, 1099 (1994).Google Scholar
  13. 13.
    C. Zhang and R.M. Laine, Polymer Preprints 38, 120 (1997).Google Scholar
  14. 14.
    D. Hoebbel, I. Pitsch, D. Heidemann, H. Jancke, and W. Hiller, Z. Anorg. Allg. Chem. 583, 133 (1990).Google Scholar
  15. 15.
    D. Hoebbel, I. Pitsch, A.-R. Grimmer, H. Jancke, W. Hiller, and R.K. Harris, Z. Chem. 29, 260 (1989).Google Scholar
  16. 16.
    P.G. Harrison and C. Hall, Main Group Metal Chemistry 20, 515 (1997).Google Scholar
  17. 17.
    P.A. Agaskar, Synth. React. Inorg. Met.-Org. Chem. 20, 483 (1990).Google Scholar
  18. 18.
    P. Jutzi, C. Batz, and A. Mutluay, Z. Naturforsch. 49b, 1689 (1994).Google Scholar
  19. 19.
    S.E. Yuchs and K.A. Carrado, Inorg. Chem. 35, 261 (1996).Google Scholar
  20. 20.
    D. Hoebbel, I. Pitsch, T. Reiher, W. Hiller, H. Jancke, and D. Müller, Z. Anorg. Allg. Chem. 576, 160 (1989).Google Scholar
  21. 21.
    A. Sellinger and R.M. Laine, Macromolecules 29, 2327 (1996).Google Scholar
  22. 22.
    F.J. Feher, D. Soulivong, A.G. Eklund, and K.D. Wyndham, J. Chem. Soc., Chem. Commun. 1185 (1997).Google Scholar
  23. 23.
    A. Sellinger and R.M. Laine, Chem. Mater. 8, 1592 (1996).Google Scholar
  24. 24.
    C. Zhang and R.M. Laine, J. Organomet. Chem. 521, 199 (1996).Google Scholar
  25. 25.
    D. Hoebbel, K. Endres, T. Reinert, and H. Schmidt, Mat. Res. Soc. Symp. Proc. 346, 863 (1994).Google Scholar
  26. 26.
    D. Hoebbel, T. Reinert, K. Endres, and H. Schmidt, in Proc. First European Workshop on Hybrid Organic-Inorganic Materials, Bierville, France, 1993, p. 319.Google Scholar
  27. 27.
    M. Moran, C.M. Casado, and I. Cuadrado, Organometallics 12, 4327 (1993).Google Scholar
  28. 28.
    C.S. Brevett, P.C. Cagle, W.G. Klemperer, D.M. Millar, and G.C. Ruben, J. Inorg. Organomet. Polymers 1, 335 (1991).Google Scholar
  29. 29.
    V.W. Day, W.G. Klemperer, V.V. Mainz, and D.M. Millar, J. Am. Chem. Soc. 107, 8262 (1985).Google Scholar
  30. 30.
    M.A. Said, H.W. Roesky, C. Rennekamp, M. Andruh, H.G. Schmidt, and M. Noltemeyer, Angew. Chem. 111, 702 (1999).Google Scholar
  31. 31.
    F.J. Feher and K.J. Weller, Inorg. Chem. 30, 880 (1991).Google Scholar
  32. 32.
    P.G. Harrison and R. Kannengiesser, J. Chem. Soc., Chem. Commun. 415 (1996).Google Scholar
  33. 33.
    R.M. Laine, M. Asuncion, S. Baliat, N.L. Dias Filho, J. Harcup, A.C. Sutorik, L. Viculis, A.F. Yee, C. Zhang, and Q. Zhu, Mat. Res. Soc. Symp. Proc. 576, 3 (1999).Google Scholar
  34. 34.
    C. Zhang, F. Babonneau, C. Bonhomme, R.M. Laine, C.L. Soles, H.A. Hristov, and A.F. Yee, J. Am. Chem. Soc. 120, 8380 (1998).Google Scholar
  35. 35.
    P.A. Agaskar, J. Chem. Soc., Chem. Commun. 1024 (1992).Google Scholar
  36. 36.
    D. Hoebbel, K. Endres, T. Reinert, and I. Pitsch, J. Non-Cryst. Solids 176, 179 (1994).Google Scholar
  37. 37.
    I. Hasegawa, J. Sol-Gel Sci. Technol. 5, 93 (1995).Google Scholar
  38. 38.
    J.J. Schwab, J.D. Lichtenhan, K.P. Chaffee, P.T. Mather, and A. Romo-Uribe, Mat. Res. Soc. Symp. Proc. 519, 21 (1998).Google Scholar
  39. 39.
    F.J. Feher, R. Terroba, R.Z. Jin, K.D. Wyndham, S. Lücke, R. Brutchey, and F. Nguyen, Polym. Mater. Sci. Eng. 82, 301 (2000).Google Scholar
  40. 40.
    F.J. Feher, D.A. Newman, and J.F. Walzer, J. Am. Chem. Soc. 111, 1741 (1989).Google Scholar
  41. 41.
    P.C. Cagle, W.G. Klemperer, and A. Simmons, Mat. Res. Soc. Symp. Proc. 180, 29 (1990).Google Scholar
  42. 42.
    P.A. Agaskar, J. Am. Chem. Soc. 111, 6858 (1989).Google Scholar
  43. 43.
    W.G. Klemperer, V.V. Mainz, and D.M. Millar, Mat. Res. Soc. Symp. Proc. 73, 3 (1986).Google Scholar
  44. 44.
    R.M. Laine, C. Zang, A. Sellinger, and L. Viculis, Applied Organometallic Chemistry 12, 715 (1998).Google Scholar
  45. 45.
    E.T. Lippmaa, M.A. Alla, T.J. Pehk, and G. Engelhardt, J. Am. Chem. Soc. 100, 1929 (1978).Google Scholar
  46. 46.
    A.G. Pittman, in Surface Properties of Fluorocarbon Polymers, edited by L.A. Wall (J. Wiley, New York, 1972).Google Scholar
  47. 47.
    M.M. Doeff and E. Lindner, Macromolecules 22, 2951 (1989).Google Scholar
  48. 48.
    I.J. Park, S.B. Lee, C.K. Choi, and K.J. Kim, J. Colloid Interface Sci. 181, 284 (1996).Google Scholar
  49. 49.
    R. Kasemann, S. Brück, and H. Schmidt, in Eurogel'91, edited by S. Vilminot, R. Nass, and H. Schmidt (Elsevier Science, Amsterdam, 1992) p. 353.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Dagobert Hoebbel
    • 1
  • Christine Weber
    • 1
  • Helmut Schmidt
    • 1
  • Ralph-Peter Krüger
    • 2
  1. 1.Institut für Neue Materialien GmbHSaarbrückenGermany
  2. 2.Bundesanstalt für MaterialprüfungBerlinGermany

Personalised recommendations