Journal of Chemical Ecology

, Volume 28, Issue 4, pp 721–740

Ability of Honeybee, Apis mellifera, to Detect and Discriminate Odors of Varieties of Canola (Brassica rapa and Brassica napus) and Snapdragon Flowers (Antirrhinum majus)

  • Geraldine A. Wright
  • Bethany D. Skinner
  • Brian H. Smith


Honeybees (Apis mellifera) use odors to identify and discriminate among flowers during foraging. This series of experiments examined the ability of bees to detect and discriminate among the floral odors of different varieties of two species of canola (Brassica rapa and Brassica napus) and also among three varieties of snapdragons (Antirhinnum majus). Individual worker honeybees were trained using a proboscis extension assay. The ability of bees to distinguish a floral odor from an air stimulus during training increased as the number of flowers used during training increased. Bees conditioned to the odor of one variety of flower were asked to discriminate it from the odors of other flowers in two different training assays. Bees were unable to discriminate among flowers at the level of variety in a randomized presentation of a reinforced floral odor and an unreinforced floral odor. In the second type of assay, bees were trained with one floral variety for 40 trials without reinforcement and then tested with the same variety or with other varieties and species. If a bee had been trained with a variety of canola, it was unable to differentiate the odor of one canola flower from the odor of other canola flowers, but it could differentiate canola from the odor of a snapdragon flower. Bees trained with the odor of snapdragon flowers readily differentiated the odor of one variety of a snapdragon from the odor of other varieties of snapdragons and also canola flowers. Our study suggests that both intensity and odor quality affect the ability of honeybees to differentiate among floral perfumes.

Apis mellifera Brassica napus Brassica rapa Antirhinnum majus proboscis extension assay floral odors olfactory learning honeybee 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agelopoulos, N. G., and Pickett, J. A.1998. Headspace analysis in chemical ecology: Effects of different sampling methods on ratios of volatile compounds present in headspace samples. J. Chem. Ecol.24:1161–1172.Google Scholar
  2. Ayasse, M., Schiestl, F. P., Paulus, H. F., Lofstedt, C., Hansson, B., Ibarra, F., and Francke, W.2000. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower specific variation of odor signals influence reproductive success? Evolution54:1995–2006.Google Scholar
  3. Beker, R., Dafni, A., Eisikowitch, D., and Ravid, U.1989.Volatiles of two chemotypes of Majorana syriacaL. (Labiatae) as olfactory cues for the honeybee. Oecologia79:446–451.Google Scholar
  4. Bhagavan, S., and Smith, B. H.1996. Olfactory conditioning in the honeybee, Apis mellifera: The effects of odor intensity. Physiol. Behav.61:107–117.Google Scholar
  5. Bitterman, M. E., Menzel, R., Fietz, A., and Schafer, S.1983. Classical-conditioning of proboscis extension in honeybees. J. Comp. Psychol97:107–119.Google Scholar
  6. Blight, M., Le Metayer, M., Pham-Delegue, M. H., Pickett, J. A., Marion-Poll, F., and Wadhams, L. J.1997. Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napusby honeybees, Apis mellifera. J. Chem. Ecol.23:1715–1727.Google Scholar
  7. Butcher, R. D., MacFarlane-Smith, W., Robertson, G. W., and Griffiths, D. W.1994. The identification of potential aeroallergen/irritants from oilseed rape (Brassica napusspp. oleifera): volatile organic compounds emitted during flowering progression. Clin. Exp. Allergy24:1105–1114.Google Scholar
  8. Chandra, S. B. C., and Smith, B. H.1998. An analysis of synthetic odor processing of odor mixtures in the honeybee, (Apis mellifera). J. Exp. Biol.201:3113–3121.Google Scholar
  9. Chandra, S. B. C., Hosler, J., and Smith, B. H.2000. Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera). J. Comp. Psychol114: 86–97.Google Scholar
  10. Chittka, L., Thomson, J. D., and Waser, N. M.1999. Flower constancy, insect psychology, and plant evolution. Naturwissenchaften86:361–377.Google Scholar
  11. Dobson, H. E.M.1994. Floral volatiles in insect biology, pp. 47–81, inE. A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.Google Scholar
  12. Dobson, H. E. M., Bergstrom, J., and Bergstrom, G.1987. Pollen and flower volatiles in two Rosaspecies. Phytochemistry 26:3171–3173.Google Scholar
  13. Dobson, H. E. M., Arroyo, J., Bergstrom, G., and Groth, I.1997. Interspecific variation in floral fragrances within the genus Narcissus(Amaryllidaceae). Biochem. Syst. Ecol.25: 685–706.Google Scholar
  14. Dudai, N., Werker, E., Putievsky, E., Ravid, U., Palevitch, D., and Halevy, A.H.1988. Glandular hairs and essential oils in the leaves and flowers of Majorana syriaca. Isr. J. Bot.37:11–18.Google Scholar
  15. Dudareva, N., and Pichersky, E.2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627–633.Google Scholar
  16. Dudareva, N., Murfitt, L. M., Mann, C. J., Gorenstein, N., Kolosova, N., Kish, C. M., Bonham, C., and Wood, K.2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell12:949–961.Google Scholar
  17. Faegri K., and Van der Pijl, L.1979. The Principles of Pollination Ecology, Third ed. Pergamom Press, Oxford.Google Scholar
  18. Free, J. B.1963. The flower constancy of honeybees. J. Anim. Ecol.32:119–132.Google Scholar
  19. Gerber, B., Geberzahn, N., Hellstern, F., Klein, J., Kowalsky, O., Wustenberg, D., and Menzel, R.1996. Honeybees transfer olfactory memories established during flower visits to a proboscis extension paradigm in the laboratory. Anim. Behav.52:1079–1085.Google Scholar
  20. Henning, J. A., Peng, Y., Montague, M. A., and Teuber, L. R.1992. Honey bee (Hymenoptera: Apidae) behavioral responses to primary alfalfa (Rosales: Fabaceae) floral volatiles. J. Econ. Entomol.85:233–239.Google Scholar
  21. Jakobsen, H. B., and Olsen, C. E.1994. Influence of climatic factors on emission of flower volatiles in situ. Planta192:365–371.Google Scholar
  22. Jakobsen, H. B., Friis, P., Neilsen, J. K., and Olsen, C. E.1994. Emission of volatiles from flowers and leaves of Brassica napusin situ. Phytochemistry37:695–699.Google Scholar
  23. Kim, H., Kim, K., Kim, N., and Lee, D.2000. Determination of floral fragrances of Rosa hybridausing solid-phase trapping–solvent extraction and gas chromatography–mass spectrometry. J. Chromatogr. A902:389–404.Google Scholar
  24. Kolosova, N., Sherman, D., Karlson, D., and Dudareva, N.2001. Cellular and subcellular localization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiol.125:1–9.Google Scholar
  25. Le MÉtayer, M., Marion-Poll, F., Sandoz, J. C., Pham-Delegue, M. H., Blight, M. M., Wadhams, L. J., Masson, C., and Woodcock, C.M.1997. Effect of conditioning on discrimination of oilseed rape volatiles by the honeybee: Use of a combined gas chromatography–proboscis extension behavioral assay. Chem. Sens.22:391–398.Google Scholar
  26. Matile, P., and Altenburger, R.1988. Rhythms of fragrance emission in flowers. Planta174:242–247.Google Scholar
  27. McEwan, M., and Smith, W. H.1998. Identification of volatile organic compounds emitted in the field by oilseed rape (Brassica napusspp. oleifera) over the growing season. Clin. Exp. Allergy28:332–338.Google Scholar
  28. Menzel, R.1990. Learning, memory and cognition in honey bees, pp. 237–292, inR. P. Kesner and D. S. Olton (eds.). Neurobiology of Comparative Cognition. Lawrence Erlbaum Assoc., Hillsdale, New Jersey.Google Scholar
  29. Metcalf, R. L.1987. Plant volatiles as insect attractants. CRC Crit. Rev. Plant Sci.5:251–301.Google Scholar
  30. Murfitt, L. M., Kolosova, N., Mann, C. J., and Dudareva, N.2000. Purification and characterization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirhinnum majus. Arch. Biochem. Biophys.382:145–151.Google Scholar
  31. Nam, K. H., Dudareva, N., and Pichersky, E.1999. Characterization of benzylalcohol acetyltransferases in scented and non-scented Clarkiaspecies. Plant Cell Physiol.40:916–923.Google Scholar
  32. Odell, E., Raguso, R. A., and Jones, K. N.1999. Bumblebee foraging responses to variation in floral scent and color in snapdragons (Antirrhinnum: Scrophulariaceae). Am. Midl. Nat.142: 237–265.Google Scholar
  33. Olesen, J. M., and Knudsen, J. T.1994. Scent profiles of flower colour morphs of Corydalis cava(Fumariaceae) in relation to foraging behaviour of bumblebee queens (Bombus terrestris). Biochem. Syst. Ecol.22:231–237.Google Scholar
  34. Omura, H. K., Honda, K., and Hayashi, N.1999. Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J. Chem. Ecol.25:1895–1906.Google Scholar
  35. Pellmyr, O., and Thien, L. B.1986. Insect reproduction and floral fragrances—keys to the evolution of the angiosperms. Taxon35:76–85.Google Scholar
  36. Pelz, C., Gerber, B., and Menzel, R.1997. Odorant intensity as a determinant for olfactory conditioning in the honeybee: Roles in discrimination, overshadowing, and memory consolidation. J. Exp. Biol.200:837–847.Google Scholar
  37. Pham-Delegue, M. H., Masson, C., Etievant, P., and Azar, M.1986. Selective olfactory choices of the honeybee among sunflower aromas: A study by cominined olfactory conditioning and chemical analysis. J. Chem Ecol.12:781–793.Google Scholar
  38. Pham-Delegue, M. H., Etievant, P., Guichard, E., and Masson, C.1989. Sunflower volatiles involved in honeybee discrimination among genotypes and flowering stages. J. Chem. Ecol.15:329–343.Google Scholar
  39. Pham-Delegue, M. H., Bailez, O., Blight, M. M., Masson, C., Picard-Nizou, A. L., and Wadhams, L. J.1993. Behavioral discrimination of oilseed rape volatiles by the honeybee Apis melliferaL. Chem. Sens.18:483–494.Google Scholar
  40. Pham-Delegue, M. H., Blight, M. M., Kerguelen, V., Le MÉtayer, M., Mario-Poll, F., Sandoz, J. C., and Wadhams, L. J.1997. Discrimination of oilseed rape volatiles by the honeybee: Combined chemical and biological approaches. Entomol. Exp. Appl.83:87–92.Google Scholar
  41. Raguso, R. A., and Pellmyr, O.1998. Dynamic headspace analysis of floral volatiles: A comparison of methods. Oikos81:238–254.Google Scholar
  42. Robertson, G. W., Griffiths, D. W., MacFarlane Smith, W., and Butcher, R. D.1993. The application of thermal desorption-gas chromatography-mass spectrometry to the analyses of flower volatiles from five varieties of oilseed rape (Brassica napusspp. oleifera). Phytochem. Anal.4:152–157.Google Scholar
  43. Schiestl, F. P., Ayasse, M., Paulus, H. F., Erdmann, D., and Francke, W.1997. Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodessubsp. sphegodes. J. Chem. Ecol.23:2281–2289.Google Scholar
  44. Smith, B. H.1998. An analysis of interaction in binary odorant mixtures. Physiol. Behav.65: 397–407.Google Scholar
  45. Smith, B. H., Abramson, C. I., and Tobin, T. R.1991. Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment. J. Comp. Psychol.105:345–356.Google Scholar
  46. Sokal, R., and Rohlf, F. J.1995. Biometry. W. H. Freeman and Co., New York.Google Scholar
  47. Tollsten, L., and Bergstrom, G.1988. Headspace volatiles of whole plants and macerated plant parts of Brassicaand Sinapis. Phytochemistry27:4013–4018.Google Scholar
  48. Tollsten, L., and Bergstrom, G.1989. Variation and post-pollination changes in floral odours released by Platanthera bifolia(Orchidaceae). Nord. J. Bot.9:359–362.Google Scholar
  49. Wadhams, L. J., Blight, M. M., Kerguelen, V., Le MÉtayer, M., Marion-Poll, F., Masson, C., Pham-Delegue, M. H., and Woodcock, C.M.1994. Discrimination of oilseed rape volatiles by honey bees: Novel combined gas chromatograph-electrophysiological behavioral assay. J. Chem. Ecol.20:3221–3231.Google Scholar
  50. Waller, G. D., Loper, G. M., and Berdel, R. L.1974. Olfactory discrimination by honeybees of terpenes identified from volatiles of alfalfa flowers. J. Apic. Res.13:191–197.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Geraldine A. Wright
    • 1
  • Bethany D. Skinner
    • 1
  • Brian H. Smith
    • 1
  1. 1.Department of EntomologyOhio State UniversityColumbus

Personalised recommendations