Potential Analysis

, Volume 17, Issue 1, pp 1–23 | Cite as

Estimates of Green Function for Relativistic α-Stable Process

  • MichaŁ Ryznar


We call an R d -valued stochastic process X t with characteristic function exp {−t{(m2/α2)α/2m}},ξ∈R d ,m>0, the relativistic α-stable process. In the paper we derive sharp estimates for the Green function of the relativistic α-stable process on C1,1 domains. Using these estimates we provide lower and upper bounds for the Poisson kernel. As another application we derive 3G Theorem and Boundary Harnack Principle for C1,1 domains.

stable and relativistic stable processes Green function harmonic functions Poisson kernel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakry, D.: 'Étude des transformations de Riesz dans les variétés Riemanniennes á courbure négative minorée', in Séminaire de Probabilités XXI, Lecture Notes in Math. 1274, Springer-Verlag, New York, 1987.Google Scholar
  2. 2.
    Bogdan, K.: 'The boundary Harnack principle for the fractional Laplacian', Studia Math. 123 (1997), 43–80.Google Scholar
  3. 3.
    Bogdan, K. and Byczkowski, T.: 'Probabilistic proof of boundary Harnack principle for symmetric stable processes', Potential Anal. 11 (1999), 135–156.Google Scholar
  4. 4.
    Bogdan, K. and Byczkowski, T.: 'Potential theory for the ?-stable Schrödinger operator on bounded Lipschitz domains', Studia Math. 133 (1999), 53–92.Google Scholar
  5. 5.
    Blumenthal, R.M., Getoor, R.K. and Ray, D.B.: 'On the distribution of first hits for the symmetric stable process', Trans. Amer. Math. Soc. 99 (1961), 540–554.Google Scholar
  6. 6.
    Blumenthal, R.M. and Getoor, R.K.: Markov Processes and Potential Theory, Springer, New York, 1968.Google Scholar
  7. 7.
    Carmona, R., Masters, W.C. and Simon, B.: 'Relativistic Schrödinger operators: Asymptotic behaviour of the eigenfunctions', J. Funct. Anal. 91 (1990), 117–142.Google Scholar
  8. 8.
    Chen, Z.Q. and Song, R.: Estimates of the Green functions and Poisson kernels of symmetric stable process, Preprint.Google Scholar
  9. 9.
    Chung, K.L. and Zhao, Z.: From Brownian Motion to Schrödinger's Equation, Springer, New York, 1995.Google Scholar
  10. 10.
    Feller, W.: An Introduction to Probability Theory and Applications, Vol. II, Wiley, New York, 1971.Google Scholar
  11. 11.
    Herbst, I.W.: 'Spectral theory of the operator (p 2 + m 2 ) 1/2 ? Ze2 /r', Comm. Math. Phys. 53 (1977), 285–294.Google Scholar
  12. 12.
    Ikeda, N. and Watanabe, S.: 'On some relations between the harmonic measure and the Lévy measure for certain class of Markov processes', J. Math. Kyoto Univ. 2 (1962), 79–95.Google Scholar
  13. 13.
    Kulczycki, T.: 'Properties of Green function of symmetric stable process', Probab. Math. Statist. 17 (1997), 339–364.Google Scholar
  14. 14.
    Kulczycki, T.: 'Intrinsic ultracontractivity for symmetric stable process', Bull. Polish Acad. Sci. Math. 46 (1998), 325–334.Google Scholar
  15. 15.
    Landkof, N.S.: Foundations of Modern Potential Theory, Springer, New York, 1972.Google Scholar
  16. 16.
    Lieb, E.H.: 'The stability of matter: From atoms to stars', Bull. Amer. Math. Soc. 22 (1990), 1–49.Google Scholar
  17. 17.
    Seneta, E.: Regularly Varying Functions, Lecture Notes in Math. 508, Springer-Verlag, New York, 1976.Google Scholar
  18. 18.
    Sztonyk, P.: 'On harmonic measure for Lévy process', to appear in Probab. Math. Statist. (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • MichaŁ Ryznar
    • 1
  1. 1.Institute of MathematicsWroclaw University of TechnologyWrocławPoland

Personalised recommendations