Journal of Cluster Science

, Volume 13, Issue 1, pp 119–136

Syntheses, Structures, Bonding, and Optical Properties of Trinuclear Cluster Iodides: M33-I)2(μ-dppm)3·I (M=Cu, Ag), dppm=bis(diphenylphosphino)methane)

  • Wen-Bo Zhou
  • Zhen-Chao Dong
  • Jun-Ling Song
  • Hui-Yi Zeng
  • Rong Cao
  • Guo-Cong Guo
  • Jin-Shun Huang
  • Jun Li


The title compounds were obtained from the reactions of copper or silver monohalides with the bidentate bis(diphenylphosphino)methane (dppm) ligand at room temperature in a mixed solvent. Single-crystal X-ray diffraction analyses indicate that both compounds crystallize in a monoclinic system but in different space groups. The structures are characterized by a trinuclear [M3I2(dppm)3]+ cation with a trigonal-bipyramid [M3(μ3-I)2] core. In agreement with the geometric characteristics of the M3 triangles, 31P NMR spectra exhibit a single peak for the [Cu3] cluster but a double-peak for the [Ag3] cluster. Preliminary optical studies by UV/Vis and emission techniques show major absorption shoulders at ∼286 nm for Cu3I2(dppm)3·I and ∼254 nm for Ag3I2(dppm)3·I, but no luminescence in the non-degassed MeCN solution at 298 K. The structures, bonding, electronic excitations and emissions are discussed based on relativistic density functional theory calculations.

trinuclear clusters Cu Ag dppm halides optical properties electronic structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Ford (1994).Coord. Chem. Rev. 132, 129.Google Scholar
  2. 2.
    P. C. Ford, E. Cariati, and J. Bourassa (1999). Chem. Rev. 99, 220.Google Scholar
  3. 3.
    V. W.-W. Yam and K. K. W. Lo (1999). Chem. Soc. Rev. 28,323.Google Scholar
  4. 4.
    M. R. Churchill and K. L. Kalra (1975). Inorg. Chem. 14,2502.Google Scholar
  5. 5.
    B.-K. Teo and J. C. Calabrese (1976). Inorg. Chem. 15, 2474.Google Scholar
  6. 6.
    D. D. Hardt and A. Pierre (1977). Inorg. Chim. Acta 25, L59; P. C. Ford and A. Vogler (1993). Acc. Chem. Res. 26, 220.Google Scholar
  7. 7.
    M. Henary and J. I. Zink (1991).Inorg. Chem. 30, 3111.Google Scholar
  8. 8.
    N. Bresciani, N. Marsich, G. Nardin, and L. Randaccio (1974). Inorg. Chim. Acta 10, L5.Google Scholar
  9. 9.
    J. K. Bera, M. Nethaji, and A. G. Samuelson (1999). Inorg. Chem. 38, 218.Google Scholar
  10. 10.
    J.-P. Lang and K. Tatsumi (1998). Inorg. Chem. 37, 6308; R.-N. Yang, Y.-H. Sun, X.-Y. Hu, and D.-M. Jin (1999). Chin. J. Chem. 17, 284.Google Scholar
  11. 11.
    V. J. Schubert, D. Neugebawer, and A. A. M. Aly (1980). Z. Anorg. Allg. Chem. 464, 217. A. A. M. Aly, D. Neugebauer, O. Orama, V. Schubert, and H. Schmidbaur (1978). Angew. Chem. Int. Ed. Engl. 17, 125.Google Scholar
  12. 12.
    D. Franzoni, G. Pelizzi, G. Predieri, P. Tarasconi, F. Vitali, and C. Pelizzi (1989). J. Chem. Soc., Dalton Trans. 247.Google Scholar
  13. 13.
    SADABS, Bruker Smart and Bruker Shelxtl Package, Bruker AXS GmbH, 1998.Google Scholar
  14. 14.
    G. M. Sheldrick, SHELXS-97, Program for X-Ray Crystal Structure Solution (Göttingen University, Germany, 1997).Google Scholar
  15. 15.
    G. M. Sheldrick, SHELXl-97, Program for X-Ray Crystal Structure Refinement (Göttingen University, Germany, 1997).Google Scholar
  16. 16.
    ADF 2000.02,Theoretical Chemistry, Vrije Universiteit, Amsterdam (http://www.scm. com). (a) E. J. Baerends, D. E. Ellis, and P. Ros (1973). Chem. Phys. 2, 41. (b)L. Versluis and T. Ziegler (1988). J. Chem. Phys. 88, 322. (c) G. te Velde and E. J. Baerends (1992). J. Comput. Phys. 99, 84. (d) C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends (1998). Theor. Chem. Acc. 99, 391.Google Scholar
  17. 17.
    (a)J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974). (b)S. H. Vosko, L. Wilk, M. Nusair (1980). Can. J. Phys. 58, 1200.Google Scholar
  18. 18.
    (a)J. P. Perdew and Y. Wang (1992). Phys Rev. B 45, 13244. (b)J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Foilhais (1992). Phys. Rev. B 46, 6671.Google Scholar
  19. 19.
    J. Li and K.-C. Wu (2000).Inorg. Chem. 39, 1538.Google Scholar
  20. 20.
    (a)J. G. Snijder, E. J. Baerends, and P. Vernooijs (1982). At. Nucl. Data Tables 26, 483. (b)P. Vernooijs, J. G. Snijder, and E. J. Baerends (1984). Slater Type Basis Functions for the Whole Periodic System, Internal Report, Free University of Amsterdam, The Netherlands.Google Scholar
  21. 21.
    T. Ziegler, E. J. Baerends, J. G. Snijder, and W. Ravenek (1989). J. Phys. Chem. 93, 3050.Google Scholar
  22. 22.
    S. J.A. van Gisbergen, J. G. Snijders, and E. J. Baerends (1999). Comp. Phys. Comm. 118, 119.Google Scholar
  23. 23.
    T. Ziegler, A. Rauk, and E. J. Baerends (1977). Theoret. Chim. Acta 43, 261.Google Scholar
  24. 24.
    V. W.-W. Yam and S. W. K. Choi (1996). J. Chem. Soc., Dalton Trans. 4227; D. Li, X. Hong, C. M. Che, W. C. Lo, and S. M. Peng (1993). J. Chem. Soc., Dalton Trans. 2929.Google Scholar
  25. 25.
    J. C. Vickery, M. M. Olmstead, E. Y. Fung, and A. L. Balch (1997). Angew. Chem. Int. Ed. Engl. 36, 1179.Google Scholar
  26. 26.
    J. Li and P. Pyykkö (1992). Chem. Phys. Lett. 197, 586.Google Scholar
  27. 27.
    V. W.-W. Yam, W.-K. Lee, K.-K. Cheung, B. Crystall, and D. Phillips (1996).J. Chem. Soc., Dalton Trans. 3283.Google Scholar
  28. 28.
    R. D. M. Ho and R. Bau (1983). Inorg. Chem. 22, 4079.Google Scholar
  29. 29.
    F. A. Cotton, G. Wilkinson, and P. L. Gauss, Basic Inorganic Chemistry, 3rd ed. (,Wiley, Toronto, 1995), p. 61.Google Scholar
  30. 30.
    R. Provencher and P. D. Harvey (1996). Inorg. Chem. 35, 2235.Google Scholar
  31. 31.
    V. W.-W. Yam, W. K. M. Fung, and K.-K. Cheung (1997). Organometallics 16, 2032.Google Scholar
  32. 32.
    N. Marsich, A. Camus, and E. Cebulec (1972). J. Inorg. Nucl. Chem. 34, 933.Google Scholar
  33. 33.
    G. B. Deacon and H. S. Green (1968). Spectrochimca Acta 24A, 845.Google Scholar
  34. 34.
    S. O. Grim and E. D. Walton (1980). Inorg. Chem. 19, 1982.Google Scholar
  35. 35.
    S. W. Carr and R. Colton (1981). Aust. J. Chem. 34, 35.Google Scholar
  36. 37.
    V. W.-W. Yam, W. K. M. Fung, and K. K. Cheung (1999). J. Cluster Sci. 10, 37.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Wen-Bo Zhou
    • 1
  • Zhen-Chao Dong
    • 1
  • Jun-Ling Song
    • 1
  • Hui-Yi Zeng
    • 1
  • Rong Cao
    • 1
  • Guo-Cong Guo
    • 1
  • Jin-Shun Huang
    • 1
  • Jun Li
    • 3
  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianPeople's Republic of China
  2. 2.National Institute for Materials ScienceTsukuba, IbarakiJapan
  3. 3.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations