Cellular and Molecular Neurobiology

, Volume 21, Issue 6, pp 629–643 | Cite as

The TRP Channel and Phospholipase C-Mediated Signaling

  • Baruch Minke


Drosophila photoreceptors use a phospholipase C-mediated signaling for phototransduction. This pathway begins by light activation of a G-protein-coupled photopigment and ends by activation of the TRP and TRPL channels. The Drosophila TRP protein is essential for the high Ca2+ permeability and constitutes the major component of the light-induced current, thereby affecting both excitation and adaptation of the photoreceptor cell. TRP is the prototype of a large and diverse multigene family whose members are sharing a structure, which is conserved through evolution from the worm Caenorhabditis elegans to humans. TRP-related channel proteins are found in a variety of cells and tissues and show a large functional diversity although the gating mechanism of Drosophila TRP and of other TRP-related channels is still unknown.

TRP TRPL phototransduction Drosophila photoreceptors phosphoinositide signaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. D.,Celniker, S. E.,Holt, R. A.,Evans, C. A.,Gocayne, J. D.,Amanatides, P. G.,Scherer, S. E.,Li P. W.,Hoskins, R. A.,Galle, R. F.,George, R. A.,Lewis, S. E.,Richards, S.,Ashburner, M.,Henderson, S.N.,Sutton, G.G.,Wortman, J. R.,Yandell, M.D.,Zhang, Q.,Chen, L. X.,Brandon, R.C.,Rogers, Y. H.,Blazej, R. G.,Champe, M.,Pfeiffer, B. D.,Wan, K. H.,Doyle, C.,Baxter, E. G.,Helt, G.,Nelson, C. R.,Gabor,G. L.,Abril, J. F.,Agbayani, A.,An, H. J.,Andrews, P. C.,Baldwin, D.,Ballew, R. M.,Basu, A.,Baxendale, J.,Bayraktaroglu, L.,Beasley, E. M.,Beeson, K. Y.,Benos, P. V.,Berman, B. P.,Bhandari, D.,Bolshakov, S.,Borkova, D.,Botchan, M. R.,Bouck, J.,Brokstein, P.,Brottier, P.,Burtis, K. C.,Busam, D. A.,Butler, H.,Cadieu, E.,Smith, H. O.,Gibbs, R. A.,Myers, E. W.,Rubin, G. M.,Venter, J. C., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.Google Scholar
  2. Arnon, A.,Cook, B.,Montell, C.,Selinger, Z., andMinke, B. (1997). Calmodulin regulation of calcium stores in phototransduction of Drosophila. Science 275: 1119-1121.Google Scholar
  3. Baer, K. M., andSaibil, H. R. (1988). Light-and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes. J. Biol. Chem. 263: 17-20.Google Scholar
  4. Barash, S.,Suss, E.,Stavenga, D. G.,Rubinstein, C. T.,Selinger, Z., andMinke, B. (1988). Light reduces the excitation efficiency in the nss mutant of the sheep blowfly Lucilia. J. Gen. Physiol. 92: 307-330.Google Scholar
  5. Bigay, J.,Deterre, P.,Pfister, C., andChabre, M. (1985). Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 191: 181-185.Google Scholar
  6. Bloomquist, B. T.,Shortridge, R. D.,Schneuwly, S.,Perdew, M.,Montell, C.,Steller, H.,Rubin, G., andPak,W. L. (1988). Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54: 723-733.Google Scholar
  7. Bourguignon, L. Y., and Jin, H. (1995). Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2C release. J. Biol. Chem. 270: 7257-7260.Google Scholar
  8. Bourguignon, L. Y.,Jin, H.,Iida, N.,Brandt, N. R., andZhang, S. H. (1993). The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2C release from Ca2C storage vesicles in mouse T-lymphoma cells. J. Biol. Chem. 268: 7290-7297.Google Scholar
  9. Chevesich, J.,Kreuz, A. J., andMontell, C. (1997). Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18: 95-105.Google Scholar
  10. Cook, B.,Bar, Y. M.,Cohen-Ben A. H.,Goldstein, R. E.,Paroush, Z.,Selinger, Z., andMinke, B. (2000). Phospholipase C and termination of G-protein-mediated signalling in vivo. Nat. Cell. Biol. 2: 296-301.Google Scholar
  11. Cook, B., andMinke, B. (1999). TRP and calcium stores in Drosophila phototransduction. Cell Calcium 25: 161-171.Google Scholar
  12. Cosens, D. J., andManning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature 224: 285-287.Google Scholar
  13. Deland, M. C., andPak, W. L. (1973). Reversibly temperature sensitive phototransduction mutant of Drosophila melanogaster. Nat. New Biol. 244: 184-186.Google Scholar
  14. Devary, O.,Heichal, O.,Blumenfeld, A.,Cassel, D.,Suss, E.,Barash, S.,Rubinstein, C. T.,Minke, B., andSelinger, Z. (1987). Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 84: 6939-6943.Google Scholar
  15. Dodge, F. A., Jr.,Knight, B. W., and Toyoda, J. (1968). Voltage noise in Limulus visual cells. Science 160: 88-90.Google Scholar
  16. Dolph,P. J.,ManSon Hing, H.,Yarfitz, S.,Colley,N. J.,Deer, J. R.,Spencer, M.,Hurley, J.B., andZuker,C. S. (1994). An eye-specific G beta subunit essential for termination of the phototransduction cascade. Nature 370: 59-61.Google Scholar
  17. Fein, A. (1986). Blockade of visual excitation and adaptation in Limulus photoreceptor by GDP-beta-S. Science 232: 1543-1545.Google Scholar
  18. Hardie, R. C. (1991). Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: Evidence for feedback by calcium permeating the light-sensitive channels. Proc. R. Soc. Lond. B 245: 203-210.Google Scholar
  19. Hardie, R. C. (1996). INDO-1 measurements of absolute resting and light-induced Ca2C concentration in Drosophila photoreceptors. J. Neurosci. 16: 2924-2933.Google Scholar
  20. Hardie, R. C., andMinke, B. (1992). The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8: 643-651.Google Scholar
  21. Hardie,R. C., andMinke, B. (1993). Novel Ca2C channels underlying transduction in Drosophila photoreceptors: Implications for phosphoinositide-mediatedCa2C mobilization. Trends Neurosci. 16: 371-376.Google Scholar
  22. Hardie, R. C.,Peretz, A.,Pollock, J. A., andMinke, B. (1993). Ca2C limits the development of the light response in Drosophila photoreceptors. Proc. R. Soc. London, Ser. B: Biol. Sci. 252: 223-229.Google Scholar
  23. Hardie, R. C.,Raghu. P.,Moore, S., andJuusola, M. (2001). Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30: 1-20.Google Scholar
  24. Harteneck, C.,Plant, T.D., andSchultz, G. (2000). From worm to man: Three subfamilies of TRP channels. Trends Neurosci. 23: 159-166.Google Scholar
  25. Hochstrate, P. (1989). Lanthanum mimicks the trp photoreceptor mutant of Drosophila in the blowfly Calliphora. J. Comp. Physiol. [A] 166: 179-187.Google Scholar
  26. Hotta, Y., andBenzer, S. (1970). Genetic dissection of the Drosophila nervous system by means of mosaics. Proc. Natl. Acad. Sci. U.S.A. 67: 1156-1163.Google Scholar
  27. Howard, J.,Blakeslee, B., andLaughlin, S.B. (1987). The intracellular pupil mechanism and photoreceptor signal: Noise ratios in the fly Lucilia cuprina. Proc. R. Soc. London, Ser. B: Biol. Sci. 231: 415-435.Google Scholar
  28. Kirkwood, A.,Weiner, D., andLisman, J. E. (1989). An estimate of the number of G regulator proteins activated per excited rhodopsin in living Limulus ventral photoreceptors. Proc. Natl. Acad. Sci.U.S.A. 86: 3872-3876.Google Scholar
  29. Lee, Y. J.,Shah, S.,Suzuki, E.,Zars, T.,O'Day, P. M., andHyde, D. R. (1994). The Drosophila dgq gene encodes a G alpha protein that mediates phototransduction. Neuron 13: 1143-1157.Google Scholar
  30. Leung, H. T.,Geng, C., andPak, W. L. (2000). Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP). and TRP-like channels in Drosophila. J. Neurosci. 20: 6797-6803.Google Scholar
  31. Li, H. S., andMontell, C. (2000). TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J. Cell Biol. 150: 1411-1422.Google Scholar
  32. McKay, R. R.,Chen,D. M.,Miller, K.,Kim, S.,Stark,W. S., andShortridge, R.D. (1995). Phospholipase C rescues visual defect in norpA mutant of Drosophila melanogaster. J. Biol. Chem. 270: 13271-13276.Google Scholar
  33. Michaely, P., andBennett, V. (1993). The membrane-binding domain of ankyrin contains four independently folded subdomains, each comprised of six ankyrin repeats. J. Biol. Chem. 268: 22703-22709.Google Scholar
  34. Minke, B. (1982). Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J. Gen. Physiol. 79: 361-385.Google Scholar
  35. Minke, B., andHardie, R. C. (2000). Genetic dissection of Drosophila phototransduction. In Stavenga, D. G.,van der Hope, D. J. N., andPugh, E. (eds.), Molecular Mechanisms in Visual Transduction, Elsevier, Amsterdam, pp. 449-525.Google Scholar
  36. Minke, B., andSelinger, Z. (1991). Inositol lipid pathway in fly photoreceptors: Excitation, calcium mobilization and retinal degeneration. In Osborne, N. A., andChader, G. J. (eds.), Progress in Retinal Research, Pergamon Press, Oxford, pp. 99-124.Google Scholar
  37. Minke, B., andSelinger, Z. (1992). The inositol-lipid pathway is necessary for light excitation in fly photoreceptors. In Corey, D., andRoper, S. D. (eds.), Sensory Transduction, The Rockofeller University Press, New York, pp. 202-217.Google Scholar
  38. Minke, B., andSelinger, Z. (1996). The roles of trp and calcium in regulating photoreceptor function in Drosophila. Curr. Opin. Neurobiol. 6: 459-466.Google Scholar
  39. Minke, B., andStephenson, R. S. (1985). The characteristics of chemically induced noise in Musca photoreceptors. J. Comp. Physiol. 156: 339-356.Google Scholar
  40. Minke, B.,Wu, C., andPak,W. L. (1975). Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258: 84-87.Google Scholar
  41. Montell, C. (1997). New light on TRP and TRPL. Mol. Pharmacol. 52: 755-763.Google Scholar
  42. Montell, C.,Jones, K.,Hafen, E., andRubin, G. (1985). Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science 230: 1040-1043.Google Scholar
  43. Montell, C., andRubin, G. M. (1989). Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron 2: 1313-1323.Google Scholar
  44. Niemeyer, B. A.,Suzuki, E.,Scott, K.,Jalink, K., andZuker, C. S. (1996). The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85: 651-659.Google Scholar
  45. Northup, J. K.,Sternweis, P. C.,Smigel, M. D.,Schleifer, L. S.,Ross, E. M., andGilman, A. G. (1980). Purification of the regulatory component of adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 77: 6516-6520.Google Scholar
  46. Pak, W. L. (1991). Molecular genetic studies of photoreceptor function using Drosophila mutants. In Piatigorsky, J.,Shinohara, T., andZelenka, P. S. (eds.), Molecular Biology of the Retina: Basic and Clinical Relevant Studies, Wiley-Liss, New York, pp. 1-32.Google Scholar
  47. Pak, W. L. (1995). Drosophila in vision research. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 36: 2340-2357.Google Scholar
  48. Pak, W. L.,Grossfield, J., andWhite, N. V. (1969). Nonphototactic mutants in a study of vision of Drosophila. Nature 222: 351-354.Google Scholar
  49. Payne, R.,Corson, D. W.,Fein, A., andBerridge, M. J. (1986). Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5 triphosphate result from a rise in intracellular calcium. J. Gen. Physiol. 88: 127-142.Google Scholar
  50. Pearn, M. T.,Randall, L. L.,Shortridge, R.D.,Burg, M.G., andPak, W. L. (1996). Molecular, biochemical, and electrophysiological characterization of Drosohpila norpA mutannts. J. Biol. Chem. 271: 4937-4945.Google Scholar
  51. Peretz, A.,Sandler, C.,Kirschfeld, K.,Hardie, R. C., andMinke, B. (1994a). Genetic dissection of lightinduced Ca2C influx into Drosophila photoreceptors. J. Gen. Physiol. 104: 1057-1077.Google Scholar
  52. Peretz, A.,Suss-Toby, E.,Rom-Glas, A.,Arnon, A.,Payne, R., andMinke, B. (1994b). The light response of Drosophila photoreceptors is accompanied by an increase in cellular calcium: Effects of specific mutations. Neuron 12: 1257-1267.Google Scholar
  53. Petersen, C. C. H.,Berridge,M. J.,Borgese,M. F., andBennett,D. L. (1995). Putative capacitative calcium entry channels: Expression of Drosophila trp and evidence for the existence of vetebrate homologues. Biochem. J. 311: 41-44.Google Scholar
  54. Phillips, A. M.,Bull, A.,andKelly, L.E. (1992). Identification of a Drosophila gene encoding a calmodulinbinding protein with homology to the trp phototransduction gene. Neuron 8: 631-642.Google Scholar
  55. Porter, J. A.,Yu, M.,Doberstein, S. K.,Pollard, T. D., andMontell, C. (1993). Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science 262: 1038-1042.Google Scholar
  56. Ranganathan, R.,Harris, G. L.,Stevens, C. F., andZuker, C. S. (1991). A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature 354: 230-232.Google Scholar
  57. Reuss, H.,Mojet, M. H.,Chyb, S., andHardie, R.C. (1997). In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19: 1249-1259.Google Scholar
  58. Schneuwly, S.,Burg, M.G.,Lending, C.,Perdew, M. H., andPak, W. L. (1991). Properties of photoreceptorspecific phospholipase C encoded by the norpA gene of Drosophila melanogaster. J. Biol. Chem. 266: 24314-24319.Google Scholar
  59. Scott, K.,Becker, A.,Sun, Y.,Hardy, R., andZuker, C. (1995). Gq® protein function in vivo: Genetic dissection of its role in photoreceptor cell physiology. Neuron 15: 919-927.Google Scholar
  60. Scott, K.,Sun, Y.,Beckingham, K., andZuker, C. S. (1997). Calmodulin regulation of Drosophila lightactivated channels and receptor function mediates termination of the light response in vivo. Cell 91: 375-383.Google Scholar
  61. Sedgwick, S. G., andSmerdon, S. J. (1999). The ankyrin repeat: A diversity of interactions on a common structural framework. Trends Biochem. Sci. 24: 311-316.Google Scholar
  62. Selinger, Z., andMinke, B. (1988). Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harb. Symp. Quant. Biol. 53(1): 333-341.Google Scholar
  63. Shieh, B. H., andZhu, M. Y. (1996). Regulation of the TRP Ca2C channel by INAD in Drosophila photoreceptors. Neuron 16: 991-998.Google Scholar
  64. Shieh,B. H.,Zhu, M.Y.,Lee, J. K.,Kelly, I. M., andBahiraei, F. (1997). Association of INADwithNORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo. Proc. Natl. Acad. Sci. U.S.A. 94: 12682-12687.Google Scholar
  65. Stahl, M. L.,Ferenz, C. R.,Kelleher, K. L.,Kriz, R. W., andKnopf, J. L. (1988). Sequence similarity of phospholipase C with the non-catalytic region of src. Nature 332: 269-272.Google Scholar
  66. Suss Toby, E.,Selinger, Z., andMinke, B. (1991). Lanthanum reduces the excitation efficiency in fly photoreceptors. J. Gen. Physiol. 98: 849-868.Google Scholar
  67. Tsunoda, S.,Sierralta, J.,Sun, Y.,Bodner, R.,Suzuki, E.,Becker, A.,Socolich, M., andZuker, C. S. (1997). A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388: 243-249.Google Scholar
  68. van Huizen, R.,Miller, K.,Chen, D-M.,Li, Y.,Lai, Z-C.,Raab, R.W.,Stark,W. S.,Shortridge, R. D., andLi, M. (1998). Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G-protein-coupled signaling. EMBO J. 17: 2285-2297.Google Scholar
  69. Warr, C.G., andKelly, L. E. (1996). Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochem. J. 314: 497-503.Google Scholar
  70. Wes, P.D.,Chevesich, J.,Jeromin, A.,Rosenberg, C.,Stetten, G., andMontell, C. (1995). TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl. Acad. Sci. U.S.A. 92: 9652-9656.Google Scholar
  71. Wood, S. F.,Szuts, E. Z., andFein, A. (1989). Inositol trisphosphate production in squid photoreceptors. Activation by light, aluminum fluoride, and guanine nucleotides. J. Biol. Chem. 264: 12970-12976.Google Scholar
  72. Wu, C. F., andPak, W. L. (1978). Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J. Gen. Physiol. 71: 249-268.Google Scholar
  73. Xu, X. Z.,Chien, F.,Butler, A.,Salkoff, L., andMontell, C. (2000). TRP°, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26: 647-657.Google Scholar
  74. Xu, X. Z.,Choudhury, A.,Li, X., andMontell, C. (1998). Coordination of an array of signaling proteins through homo-and heteromeric interactions between PDZ domains and target proteins. J. Cell Biol. 142: 545-555.Google Scholar
  75. Xu, X. Z. S.,Li, H. S.,Guggino,W. B., andMontell, C. (1997). Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89: 1155-1164.Google Scholar
  76. Yarfitz, S.,Niemi, G. A.,McConnell, J. L.,Fitch, C. L., andHurley, J. B. (1991). A G beta protein in the Drosophila compound eye is different from that in the brain. Neuron 7: 429-438.Google Scholar
  77. Yarfitz, S. L.,Running Deer, J. L.,Froelick, G.,Colley, N. J., andHurley, J. B. (1994). In situ assay of lightstimulated G-protein activity in Drosophila photoreceptor G-protein beta mutants. J. Biol. Chem. 269: 30340-30344.Google Scholar
  78. Zhu, X.,Chu, P. B.,Peyton, M., andBirnbaumer, L. (1995). Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett. 373: 193-198.Google Scholar
  79. Zhu, X.,Jiang, M. S.,Peyton, M.,Boulay, G.,Hurst, R.,Stefani, E., andBirnbaumer, L. (1996). trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2C entry. Cell 85: 661-671.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Baruch Minke
    • 1
  1. 1.Department of Physiology, Kühne Minerva Center for Studies of Visual Transduction, Hadassah Medical SchoolHebrew UniversityJerusalemIsrael

Personalised recommendations