Advertisement

Artificial Intelligence Review

, Volume 18, Issue 2, pp 117–157 | Cite as

User Interfaces and Help Systems: From Helplessness to Intelligent Assistance

  • Sylvain Delisle
  • Bernard Moulin
Article

Abstract

Despite a large body of multidisciplinary research on helpful and user-orientedinterface design, help facilities found in most commercial software are so ill-conceived thatthey are often ‘unhelpful’. From a wide spectrum of disciplines and software tools, we presentan extensive review of related work, identifying their limitations as well as their most prom-isingaspects. Using this material, we attempt to recapitulate the necessary requirements foruseful help systems.

human-computer interaction (intelligent, graphical) user interface (intelligent) help user assistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agah, A. & Tanie K. (2000). Intelligent Graphical User Interface Design Utilizing Multiple Fuzzy Agents. Interacting with Computers 12: 529–542.Google Scholar
  2. AI Magazine (2001). Special issue on Intelligent User Interfaces. AI Magazine 22(4), Winter 2001.Google Scholar
  3. Akoumianakis, D., Savidis, A. & Stephanidis, C. (2000). Encapsulating Intelligent Interactive Behaviour in Unified User Interface Artefacts. Interacting with Computers 12: 383–408.Google Scholar
  4. Allen, J. F., Miller, B. W., Ringger, E. K. & Sikorski, T. (1996). A Robust System for Natural Spoken Dialogue. Proceeding of the 34th Annual Meeting of the Association for Compu-tational Linguistics Conference (ACL-96), 62–70. Santa Cruz, California, USA, 24-27 June.Google Scholar
  5. André, E. & Rist, T. (1993). The Design of Illustrated Documents as a Planning Task. In Maybury, M.T. (ed.) Intelligent Multimedia Interfaces, 94–116. AAAI/MIT Press.Google Scholar
  6. André, E. & Rist, T. (2001). Controlling the Behavior of Animated Presentation Agents in the Interface: Scripting versus Instructing. AI Magazine 22(4), Winter 2001: 53–66.Google Scholar
  7. Ardissono, L., Lombardo, A. & Sestero, D. (1993). A Flexible Approach to Cooperative Response Generation in Information-Seeking Dialogues. Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, 274–276. Columbus, Ohio, USA, 22-26 June.Google Scholar
  8. Balbo, S. (1994). Évaluation ergonomique des interfaces utilisateur: un pas vers l'automatisation, Thèse de doctorat en informatique, Laboratoire de Génie Informatique-IMAG, Université Joseph Fourier-Grenoble 1.Google Scholar
  9. Ball, G., Ling, D., Kurlander, D., Miller, J. Pugh, D., Skelly, T., Stankosky, A., Thiel, D., Van Dantzich, M. & Wax, T. (1997). Lifelike Computer Characters: The Persona Project at Microsoft. In Bradshaw, J. M. (eds.) Software Agents, chapter 10, 191–222. AAAI/MIT Press.Google Scholar
  10. Bates, J. (1994). The Role of Emotion in Believable Agents. Communications of the ACM 37(7): 122–125.Google Scholar
  11. Bonar, J. & Liffick, B. (1991). Communicating with High-Level Plans. In Sullivan, J. W. & Tyler, S. W. ( eds. ) Intelligent User Interfaces, 129–156. ACM Press.Google Scholar
  12. Boy G. A. (1991). Intelligent Assistant Systems. Academic Press.Google Scholar
  13. Bradshaw J. M. (ed.) (1997). Software Agents. AAAI Press/MIT Press.Google Scholar
  14. Burger, J. D. & Marshall, R. J. (1998). The Application of Natural Language Models to Intel-ligent Multimedia. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User Interfaces, 429–440. Originally published in Maybury (1993), 174-196.Google Scholar
  15. Carberry, S. (1990). Plan Recognition in Natural Language Dialogue. The MIT Press.Google Scholar
  16. Carberry, S. (2001). Techniques for Plan Recognition. User Modelling and User-Adapted Interaction 11: 31–48.Google Scholar
  17. Cassell, J., Pelachaud, C., Badler, N., Steedman, M., Achorn, B., Becket, T., Douville, B., Prevost, S. & Stone, M. (1998). Animated Conversation: Rule-Based Generation of Facial Expression, Gesture and Spoken Intonation for Multiple Conversational Agents. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User Interfaces, 582–589. Morgan Kaufmann. Originally published in Proceedings of the SIGGRAPH'94 Conference, 413-420.Google Scholar
  18. Cawsey, A. (1998). Planning Interactive Explanations. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User Interfaces, 404–419. Morgan Kaufmann. Originally published in International Journal of Man-Machine Studies 38: 169-199, 1993.Google Scholar
  19. Cesta, A. & Romano, G. (1989). Planning Structures for an Intelligent Help System. Proceedings of the 3rd International Conference on Human-Computer Interaction,vol.2, 767–774.Google Scholar
  20. Cetus: A Web site worth 10300 links of object-oriented subjects: http://www.csioo.com/ cetusen/software.html Chan, C. W., Chen, L.-L. & Geng, L. (2000). Knowledge Engineering for an Intelligent Case-based System for Help Desk Operations. Expert Systems with Applications 18: 125–132.Google Scholar
  21. Chandrasekaran, B. (1986). Generic Tasks in Knowledge-based Reasoning. IEEE Expert 1(3): 23–30.Google Scholar
  22. Chang, C.-H. & Chen, Y. (1995). A Study of Multimedia Applications in Education and Training. Computers in Industrial Engineering 29(1–4): 103-107.Google Scholar
  23. Chase, J. D., Parentti, M., Hartson, H. R. & Hix, D. (1993). Task-Oriented User Documenta-tion Using the User Action Notation: A Case Study. Proceedings of the 5th International Conference on Human-Computer Interaction, vol. 1, 421–426.Google Scholar
  24. Chin D. N. (1989). KNOME: Modeling What the User Knows in UC. in Kobsa, A. & Wahlster, W (eds.) User Models in Dialog Systems. Springer Verlag.Google Scholar
  25. Chin, D. N. (1998). Intelligent Interfaces as Agents. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User Interfaces. Morgan Kaufmann, pp. 343–357. Origin-ally published in Sullivan, J. W. & Tyler, S. W. (eds.) Intelligent User Interfaces (1991), 177-206.Google Scholar
  26. Chin, D. N. (2001). Empirical Evaluation of User Models and User-adapted Systems. User Modeling and User-Adapted Interaction 11: 181–194.Google Scholar
  27. Chiu, C.-T., Chiu, C. & Norcio, A. F. (1993). An Adaptive Intelligent Help System. Proceedings of the 5th International Conference on Human-Computer Interaction, vol.2, 718–723.Google Scholar
  28. Chu, C.-C.P., Dani, T. H. & Gadh, R. (1997). Multi-Sensory User Interface for a Virtual-Reality-Based Computer-Aided Design. Computer Aided Design 29(10): 709–725.Google Scholar
  29. Conger, S. (1994). The New Software Engineering. Wadsworth Publishing Company.Google Scholar
  30. David, J.-M., Krivine, J.-P. & Simmons, R. (eds.) (1993). Second Generation Expert Systems. Springer Verlag.Google Scholar
  31. Decker, K., Pannu, A., Sycara, K. & Williamson, M. (1997). Designing Behaviors for Inform-ation Agents. Proceedings of the First International Conference on Autonomous Agents (Agents'97). Marina del Rey, California, February 5–8.Google Scholar
  32. Dede, C. (1986). A Review and Synthesis of Recent Research in Intelligent Computer-Assisted Instruction. International Journal of Man-Machine Studies 24(4): 329–353.Google Scholar
  33. Dillon, A. & Watson, C. (1996). User Analysis in HCI: the Historical Lesson from Individual Differences Research. International Journal of Human-Computer Studies 45(6): 619–637.Google Scholar
  34. Dormann, C. (1996). Designing On-Line Animated Help for Multimedia Applications. Lecture Notes in Computer Science, #1077, 73–84. Springer Verlag.Google Scholar
  35. El-Sheikh, E. & Sticklen, J. (1999). Leveraging a Task-Specific Approach for Intelligent Tutoring System Generation: Comparing the Generic Tasks and KADS Frameworks. Lecture Notes in Computer Science, #1611, 809–819. Springer Verlag.Google Scholar
  36. Ericksson, H.-E. & Penker, M. (1998). UML Toolkit. Wiley.Google Scholar
  37. Essa, I. & Pentland, A. (1997). Coding, Analysis, Interpretation, and Recognition of Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7): 757–763.Google Scholar
  38. Feiner, S. K. & McKeown, K. R. (1993). Automating the Generation of Coordinated Multi-Media Explanations. In Maybury, M. T. (ed.) Intelligent Multimedia Interfaces, 117–147.Google Scholar
  39. Finin, T. W. (1989). GUMS: A General User Modeling Shell. In Kobsa, A. & Wahlster, W. (eds.) User Models in Dialog Systems. Springer Verlag.Google Scholar
  40. Fischer, G. (2001), User Modeling in Human-Computer Interaction. 3 User Modeling and User-Adapted Interaction 11: 65–86.Google Scholar
  41. Fischer, G., Lemke, A. & Schwab. T. (1985). Knowledge-Based Help Systems User Assist-ance. Proceedings of the ACM CHI'85 Conference on Human Factors in Computing Systems, 161–167.Google Scholar
  42. Fogg, B. J. (1997). Charismatic Computers: Creating more Likable and Persuasive Interactive Technologies by Leveraging Principles from Social Psychology, Ph.D. Thesis, Department of Communication, Stanford University.Google Scholar
  43. Fong, A. C. M. & Hui, S. C. (2001). An Intelligent Online Machine Fault Diagnosis System. Computing & Control Engineering Journal, October 2001: 217–223.Google Scholar
  44. Friedman, B. & Nissenbaum, H. (1997). Software Agents and User Autonomy. Proceedings of the First International Conference on Autonomous Agents (Agents'97). Marina del Rey, California, February 5–8.Google Scholar
  45. Frohlich D., P. Drew & A. Monk (1994), Management of Repair in Human-Computer Interaction. Human-Computer Interaction 9(3): 385–425.Google Scholar
  46. Gardiner, M. M. & Christie, B. (eds.) (1987). Applying Cognitive Psychology to User-Interface Design. Wiley.Google Scholar
  47. Gilbert, G. N. (1987): Cognitive and Social Models of the User. Proceedings of the IFIP INTERACT'87 Human-Computer Interaction Conference, 165–169.Google Scholar
  48. Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J. & Riedl, J. (1999). Combining Collaborative Filtering with Personal Agents for Better Recom-mendations. Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), 439–446. Orlando, Florida, USA, 18-22 July.Google Scholar
  49. Goodman, B. A. (1993). Multi-Media Explanations for Intelligent Training Systems. In Maybury, M. T. (ed.) Intelligent Multimedia Interfaces, 148–171. AAAI/MIT Press.Google Scholar
  50. Gould, J. D. & Lewis, C. (1984). Design for Usability: Key Principles and What Designers Think. Communications of the ACM 38(3): 300–311.Google Scholar
  51. Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001). Intelligent Tutoring Systems with Conversational Dialogue. AI Magazine 22(4), Winter 2001: 39–52.Google Scholar
  52. Grice, H. P. (1975). Logic and Conversation. In Cole, P. & Morgan, J. L. (eds.) Syntax and Semantics (Vol.3, Speech Acts), 41–58. Academic Press.Google Scholar
  53. Harker, S. (1995). The Development of Ergonomics Standards for Software. Applied Ergo-nomics 26(4): 275–279.Google Scholar
  54. Hayes-Roth, B. (1995). An Architecture for Adaptive Intelligent Systems. Artificial Intelli-gence 72: 329–365.Google Scholar
  55. Hecking, M. (2000). The SINIX Consultant-Towards a Theoretical Treatment of Plan Recog-nition. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX, Artificial Intelligence Review 14(3), Kluwer: 153–180.Google Scholar
  56. Hegner, S. (2000). Plan Realization for Complex Command Interaction in the UNIX Help Domain. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX, Artificial Intelligence Review 14(3), Kluwer: 181–228.Google Scholar
  57. Herrmann, J. (1996). Different Ways to Support Intelligent Assistant Systems by Use of Machine Learning Methods. International Journal of Human-Computer Interaction 8(3): 287–308.Google Scholar
  58. Herrmann, J., Kloth, M. & Feldkamp, F. (1998). The Role of Explanation in an Intelligent Assistant System. Artificial Intelligence in Engineering 12: 107–126.Google Scholar
  59. Hickman, F. R., Killin, J. L., Land, L., Mulhall, T., Porter, D. & Taylor, R. M. (1989). Analysis for Knowledge-Based Systems (A Practical Guide to the KADS Methodology). Ellis Horwood.Google Scholar
  60. Hodges, M. (1998). Virtual Reality in Training. Computer Graphics World 21(8): 45–52.Google Scholar
  61. Jameson, A., Paris, C. & Tasso, C. (1997). User Modeling. Proceedings of the Sixth International Conference UM97. Vienna, Austria (available on line from http://um.org).Google Scholar
  62. Jennings, N. R. (1999). Agent-Based Computing: Promise and Perils. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99), 1429–1436. Stockholm, Sweden, July 31-August 6.Google Scholar
  63. Johnson, W. L. (2001). Pedagogical Agent Rresearch at CARTE. AI Magazine 22(4), Winter 2001: 85–94.Google Scholar
  64. Jokinen, K. (1996). Reasoning about Coherent and Cooperative System Responses. Lecture Notes in Computer Science, #1036, 168–187. Springer Verlag.Google Scholar
  65. Jones, J., Millington, M. & Virvou, M. (2000). An Assumption-based Truth Maintenance System in Active Aid for UNIX Users. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX, Artificial Intelligence Review 14(3), Kluwer: 229–252.Google Scholar
  66. Jones, P. M. & Mitchell, C. M. (1994). Model-Based Communicative Acts: Human-Computer Collaboration in Supervisory Control. International Journal of Human-Computer Studies 41: 527–551.Google Scholar
  67. Kang, B. H., Yoshida, K., Motoda, H. & Compton, P. (1997). Help Desk System with Intelligent Interface. Applied Artificial Intelligence 11: 611–631.Google Scholar
  68. Klein, J., Moon, Y. & Picard, R. W. (1999). This Computer Responds to User Frustration (Theory, Design, Results, and Implications). Vision and Modeling Group Technical Report #501, MIT Media Laboratory, June 17.Google Scholar
  69. Kobsa, A. & Wahlster, W. (1988). guest editors, Special Issue on User Modelling. Computa-tional Linguistics 14(3).Google Scholar
  70. Kobsa, A. & Wahlster, W. (1989). User Models in Dialog Systems. Springer Verlag.Google Scholar
  71. Kobsa, A. (ed.) (2001). Ten Year Anniversary Issue. User Modelling and User-Adapted Interaction 11(1–2).Google Scholar
  72. Komatsu, H., Ogata, N. & Ishikawa, A. (1994). Towards a Dynamic Theory of Belief-Sharing in Cooperative Dialogues. Proceedings of the 15th International Conference on Computational Linguistics (COLING-94), vol. 2, 1164–1169. Kyoto, Japan, August 5-9.Google Scholar
  73. Lashkari, Y., Metral, M. & Maes, P. (1994). Collaborative Interface Agents. Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), 444–449. Seattle, Washington, July 31-August 4.Google Scholar
  74. Lecerof, A. (1997). User Interface Evaluation Using Task Models, Master's Thesis, Depart-ment of Computer and Information Science, Linköping University.Google Scholar
  75. Lelouche, R. (1998). The Successive Contributions of Computers to Education: A Survey. European Journal of Engineering Education 23(3): 297–308.Google Scholar
  76. Lester, J. C., FitzGerald, P. J. & Stone, B. A. (1997). The Pedagogical Design Studio: Exploiting Artifact-Based Task Models for Constructivist Learning. Proceedings of the 1997 International Conference on Intelligent User Interfaces, 155–162.Google Scholar
  77. Lieberman, H. (1997). Autonomous Interface Agents. Proceedings of the ACM CHI'97 Conference on Human Factors in Computing Systems (available on line from http://www.acm.org/sigs/sigchi/chi97/proceedings/paper/hl.htm).Google Scholar
  78. Linden, G., Hanks, S. & Lesh, N. (1997). Interactive Assessment of User Preference Models: The Automated Travel Assistant. In Jameson, A. et al. (eds.) proceedings of the Sixth International Conference UM97, 67–69. Vienna, Austria.Google Scholar
  79. Liu, Q. & Ng, P. A. (1998). A Query Generalizer for Providing Cooperative Responses in an Office Document System. Data & Knowledge Engineering 27(2): 177–205.Google Scholar
  80. Lovett, M. C. (1998). Cognitive Task Analysis in Service of Intelligent Tutoring System Design: A Case Study in Statistics. Lecture Notes in Computer Science, #1452, 234–243. Springer Verlag.Google Scholar
  81. Maes, P. (1994). Agents that Reduce Work and Information Overload. Communications of the ACM, Special Issue on Intelligent Agents, 37(7): 31–40.Google Scholar
  82. Maes, P. (1997). Agents that Reduce Work and Information Overload. In Bradshaw, J. M. (ed.) Software Agents, chapter 8, 145–164. AAAI Press/MIT Press.Google Scholar
  83. Mallen, C. (1996). Designing Intelligent Help for Information Processing Systems. Interna-tional Journal of Human-Computer Studies 45: 349–377.Google Scholar
  84. Malone, T. W., Lai, K.-Y. & Grant, K. R. (1997). Agents for Information Sharing and Coordination: A History and Some Reflections. in Bradshaw, J. M. (ed.) Software Agents, chapter 7, 109–143. AAAI Press/MIT Press.Google Scholar
  85. Marion, C. (1999a). User Interface Design (available on line from http://www.chesco.com/~cmarion/Design/UIDesign.html).Google Scholar
  86. Marion, C. (1999b). Online Information Design (available on line from http://www.chesco. com/~cmarion/Design/OnInfDes.html).Google Scholar
  87. Marion, C. (1999c). What is Interaction Design (and what does it mean to inform-ation designers)? (available on line from http://www.chesco.com/~cmarion/PCD/ WhatIsInteractionDesign.html)Google Scholar
  88. Mathews, M., Pharr, W., Biswas, G. & Neelakandan, H. (2000). An Active Intelligent Assist-ance Systems. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX, Artificial Intelligence Review 14(1–2), Kluwer: 121-141.Google Scholar
  89. Maybury, M. T. & Wahlster, W. (eds.) (1998). Readings in Intelligent User Interfaces. Morgan Kaufmann.Google Scholar
  90. Maybury, M. T. (1992). Communicative Acts for Explanation Generation. International Journal of Man-Machine Studies 37(2): 135–172.Google Scholar
  91. Maybury, M. T. (ed.) (1993). Intelligent Multimedia Interfaces. AAAI/MIT Press.Google Scholar
  92. Mayfield, J. (2000). Evaluating Plan Recognition Systems: Three Properties of a Good Explanation. Artificial Intelligence Review 14: 351–376.Google Scholar
  93. McCoy, K. F. (1983). Correcting Misconceptions: What to Say when the User is Mistaken. Proceedings of the ACM CHI'83 Conference on Human Factors in Computing Systems, 197–201.Google Scholar
  94. McCoy, K. F. (1988). Reasoning on a Highlighted User Model to Respond to Misconceptions. In Kosba, A. & Wahlster, W. (eds.) Computationa Linguistics 14(3): 52–63.Google Scholar
  95. McTear, M. F. (1993). User Modelling for Adaptive Computer Systems: a Survey of Recent Developments. Artificial Intelligence Review 7: 157–184.Google Scholar
  96. Miller, J. R., Hill, W. C., McKendree, J., Masson, M. E. J., Blumenthal, B., Terveen, L. & Zaback, J. (1987). The Role of the System Image in Intelligent User Assist-ance. Proceedings of the IFIP INTERACT'87 Conference: Human-Computer Interaction, 885–890.Google Scholar
  97. Mitta, D. A. & Packebush, S. J. (1995). Improving Interface Quality: An Investigation of Human-Computer Interaction Task Learning. Ergonomics 38(7): 1307–1325.Google Scholar
  98. Mo, J. & Crouzet, Y. (1999). A Method for Operator Error Detection Based on Plan Recognition. Lecture Notes in Computer Science, vol. 1698, 125–138. Springer Verlag.Google Scholar
  99. Moulin, B. & Chaib-draa, B. (1996). Distributed Artificial Intelligence: an Overview. In Jennings, N. & O'Hare, G. (eds.) Foundations of Distributed Artificial Intelligence, 3–55. Wiley.Google Scholar
  100. Moulin, B., Irandoust, H., Bélanger, M. & Desbordes, G. (2002). Explanation and Argu-mentation Capabilities: Towards the Creation of More Persuasive Agents. AI Review(forthcoming).Google Scholar
  101. Myers, B., Hollan, J. & Cruz, I. (eds.) (1996). Strategic Directions in Human Computer Interaction. ACM Computing Surveys 28(4).Google Scholar
  102. Myers, B., Hudson, S. E. & Pausch, R. (2000). Past, Present, and Future of User Interface Software Tools. ACM Transactions on Computer-Human Interaction 7(1): 3–28.Google Scholar
  103. Nadeau, D. R. (1996). User Interface Metaphor in Virtual Reality Using VRML. Behavior Research Methods, Instruments, & Computers 28(2): 170–173.Google Scholar
  104. Nagao, K. & Takeuchi, A. (1998). Speech Dialogue with Facial Displays: Multimodal Human-Computer Conversation. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User Interfaces, 572–579. Morgan Kaufmann. Originally published in Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL-95), 102-109. Cambridge, Massachusetts, USA, 26-30 June, 1995.Google Scholar
  105. Najjar, L. J. (1998). Principles of Educational Multimedia User Interface Design. Human Factors-Journal of the Human Factors and Ergonomics Society 40(2): 311–323.Google Scholar
  106. Neal, J. G. & Shapiro, S. C. (1991). Intelligent Multi-Media Interface Technology. in Sullivan, J.W. & Tyler, S.W. (eds.) Intelligent User Interfaces, 11–43. ACM Press.Google Scholar
  107. Norman, D. A. & Draper, S. W. (eds.) (1986). User-Centered System Design. Lawrence Hillsdale, NJ: Erlbaum Associates.Google Scholar
  108. Norman, D. A. (1986). Cognitive Engineering. User-Centered System Design, 31–61. Lawrence Hillsdale, NJ: Erlbaum Associates.Google Scholar
  109. Okada, N., Inui, K. & Tokuhisa, M. (1999). ‘An Affective Approach to Human-Friendly Dialogue Systems. Proceedings of the 1999 Conference Pacific Association for Compu-tational Linguistics (PACLING-99). University of Waterloo, Ontario (Canada), 25–28 August.Google Scholar
  110. Palamidese, P. (1999). A Virtual Reality Interface for Space Planning Tasks. Journal of Visual Languages and Computing 10: 99–115.Google Scholar
  111. Paris, C. (1988). Tailoring Object Descriptions to a User's Level of Expertise. In Kobsa, A. & Wahlster, W. (eds.) Computational Linguistics 14(3): 64–78.Google Scholar
  112. Payne, T. R. & Edwards, P. (1997). Interface Agents that Learn: An Investigation of Learning Issues in a Mail Agent Interface. Applied Artificial Intelligence 11: 1–32.Google Scholar
  113. Pérez-Quiñones, M. A. & Sibert, J. L. (1996). A Collaborative Model of Feedback in Human-Computer Interaction. Proceedings of the ACM CHI'96 Conference on Human Factors in Computing Systems (available on line from )http://www.acm.org/sigchi/chi96/ proceedings/papers/Perez/map1txt.htm).Google Scholar
  114. Picard, R. W. (1997). Affective Computing. MIT Press.Google Scholar
  115. Preece, J. (1994). Human Computer Interaction. Addison-Wesley.Google Scholar
  116. Pressman, R. S. (1997). Software Engineering (A Practitioner's Approach), 4th edition.Google Scholar
  117. Quilici, A. (1989). Detecting and responding to Plan-Oriented Misconceptions. In Kobsa, A. & Wahlster, W. (eds.) User Models in Dialog Systems. Springer Verlag.Google Scholar
  118. Ramscar, M., Pain, H. & Lee, J. (1997). Do We Know What the User Knows and Does it Matter? The Epistemics of User Modeling. In Jameson, A. et al. (eds.) Proceedings of the Sixth International Conference UM97, 429–431. Vienna, Austria.Google Scholar
  119. Rich, C. & Sidner, C. L. (1997). COLLAGEN: When Agents Collaborate with People. Proceedings of the First International Conference on Autonomous Agents (Agents'97). Marina del Rey, California, February 5–8.Google Scholar
  120. Rich, C., Sidner, C. L. & Lesh, N. (1997). COLLAGEN: Applying Collaborative Discourse Theory to Human-computer Interaction. AI Magazine 22(4), Winter 2001: 27–38.Google Scholar
  121. Rich, E. (1998). User Modeling via Stereotypes. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent User Interfaces, 329–341. Morgan Kaufmann. Originally published in Cognitive Science 3: 329-354, 1979.Google Scholar
  122. Rickel, J. & Johnson, W. L. (1999). Animated Agents for Procedural Training in Virtual Reality: Perception, Cognition, and Motor Control. Applied Artificial Intelligence 13: 343–382.Google Scholar
  123. Riecken, D. (1997). ‘The M System. In Bradshaw, J.M. (ed.) Software Agents, chapter 12, 247–267. AAAI Press/MIT Press.Google Scholar
  124. Rivera, K., Cooke, N. J. & Bauhs, J. A. (1996). The Effects of Emotional Icons on Remote Communication. Proceedings of the ACM CHI'96 Conference on Human Factors in Computing Systems, vol. 2, pp. 99–100.Google Scholar
  125. Russell, S. & Norvig, P. (1995). Artificial Intelligence (A Modern Approach). Prentice Hall.Google Scholar
  126. Sæbø, K. J. (1988). A Cooperative Yes-No Query System Featuring Discourse Particles. Proceedings of the 12th International Conference on Computational Linguistics (COLING-88), vol. 2, 549–554. Budapest, Hungary, 22-27 August.Google Scholar
  127. Scapin, D. L. (1990). ‘Des critères ergonomiques pour l'évaluation et la conception d'interfaces utilisateurs’. Actes du XXVI ème Congrès de la SELF. Montréal, Québec, Canada, 3–5 October.Google Scholar
  128. Schneider-Hufschmidt, M., Kühme, T. & Malinowski, U. (1993). Adaptive User Interfaces: Principles and Practice. North Holland.Google Scholar
  129. Schreiber, A. Th., Akkermans, J. M., Anjewierden, A. A., de Hoog, R., Shadbolt, N. R., Van de Velde, W. & Wielinga, B. J. (2000). Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press. See also http://www.commonkads.uva.nl/Google Scholar
  130. Schuster, E., Chin, D., Cohen, R., Kobsa, A., Morik, K., Sparck Jones, K. & Wahlster, W. (1988). Discussion Section on the Relationship between User Models and Discourse Models. in Kobsa, A. & Wahlster, W. (eds) Computational Linguistics 14(3): 79–103.Google Scholar
  131. Senach, B. (1990). Évaluation ergonomique des interfaces homme-machine: une revue de littérature. Rapport de recherche INRIA #1180, Programme 8, Communication Homme-Machine.Google Scholar
  132. Sengers, P. (1999). Designing Comprehensible Agents. Proceedings of the Sixteenth Inter-national Joint Conference on Artificial Intelligence (IJCAI-99), 1227–1232. Stockholm, Sweden, July 31-August 6.Google Scholar
  133. Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. IEEE Computer 16(8): 57–69.Google Scholar
  134. Shneiderman, B. (1997). Direct Manipulation Versus Agents: Paths to Predictable, Control-lable, and Comprehensible Interfaces. In Bradshaw, J. M. (ed.) Software Agents, chapter 6, 97–106. AAAI Press/MIT Press.Google Scholar
  135. Shneiderman, B. (1998). Designing the User Interface (Strategies for Effective Human-Computer Interaction), 3rd edition. Addison-Wesley.Google Scholar
  136. Shneiderman, B. (1999). Universal Usability: Pushing Human-Computer Interaction Research to Empower Every Citizen. HCIL Technical Report No. 99–17 (July 1999), ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/99-17html/99-17.htmlGoogle Scholar
  137. Singh, M. P., Rao, A. S. & Georgeff, M. P. (1999). Formal Methods in DAI: Logic-Based Representation and Reasoning. In Weiss, G. (ed.) Multiagent Systems. The MIT Press.Google Scholar
  138. Smith, D. C., Cypher, A. & Spohrer, J. (1997). KidSim: Programming Agents without a Programming Language. In Bradshaw, J. M. (ed.) Software Agents, chapter 9, 165–190. AAAI Press/MIT Press.Google Scholar
  139. Smith, J. J. (1985). SUSI-A Smart User-System Interface. Proceedings of the HCI'85 Conference on People and Computers: Designing the Interface, 211–220.Google Scholar
  140. Sommerville, I. (2000). Software Engineering. 5th edition, Addison-Wesley. See also the Web site http://www.comp.lancs.ac.uk/computing/resources/SE6/Google Scholar
  141. Strachan, L., Anderson, J., Sneesby, M. & Evans, M. (1997). Pragmatic User Modelling in a Commercial Software System. In Jameson, A. et al. (eds.) Proceedings of the Sixth International Conference UM97, 189–200. Vienna, Austria.Google Scholar
  142. Strachan, L., Anderson, J., Sneesby, M. & Evans, M. (2000). Minimalist User Modelling in a Complex Commercial Software System. User Modelling and User-Adapted Interaction 10(2–3): 109-146.Google Scholar
  143. Sullivan, J. W. & Tyler, S. W. (eds.) (1991). Intelligent User Interfaces. ACM Press.Google Scholar
  144. Sutcliffe, A. (2000). On the Effective Use and Reuse of HCI Knowledge. ACM Transactions on Computer-Human Interaction 7(2): 197–221.Google Scholar
  145. Swartout, W. R. & Moore, J. D. (1993). Explanation in Second Generation Expert Systems. In David, J.-M. et al. (eds.) Second Generation Expert Systems, 544–585. Springer Verlag.Google Scholar
  146. Takeda, K., Inaba, M. & Sugihara, K. (1996). User Interface and Agent Prototyping for Flexible Working. IEEE Multimedia Magazine 3(2): 40–50.Google Scholar
  147. Tanner, M. C., Keuneke, A. M. & Chandrasekaran, B. (1993). Explanation Using Task Struc-ture and Domain Functional Models. In David, J.-M. et al. (eds.) Second Generation Expert Systems, 586–613. Springer Verlag.Google Scholar
  148. Terwilliger, R. B. & Polson, P. G. (1997). Relationships Between Users' and Inter-faces' Task Representations. Proceedings of the ACM CHI'97 Conference on Human Factors in Computing Systems (available on line from http://www.acm.org/sigs/sigchi/ chi97/proceedings/paper/hl.htm).Google Scholar
  149. Trika, S. N., Banerjee, P. & Kashyap, R. L. (1997). Virtual Reality Interfaces for Feature-Based Computer-Aided Design Systems. Computer-Aided Design 29(8): 565–574.Google Scholar
  150. Tsui, K. C. & Azvine, B. (2000). Intelligent Multimodal User Interface. In Azvine et al. (eds.) Intelligent Systems and Soft Computing. LNAI 1804, 259–283. Springer.Google Scholar
  151. Van Aalst, J. W., Van der Mast, C. A. P. G. & Carey, T. T. (1995). An Interactive Multimedia Tutorial for User Interface Design. Computers and Education 25(4): 227–233.Google Scholar
  152. van Beek, P., Cohen, R. & Schmidt, K. (1993). From Plan Critiquing to Clarification Dialogue for Cooperative Response Generation. Computational Intelligence 9(2): 132–154.Google Scholar
  153. Virvou, M. (1999). Automatic Reasoning and Help about Human Errors in Using an Operating System. Interacting with Computers 11: 545–573.Google Scholar
  154. Virvou, M., Jones, J. & Millington, M. (2000). Virtues and Problems of an Active Help System for UNIX. In Hegner, S. J. et al. (eds.) Special Issue on Intelligent Help Systems for UNIX, Artificial Intelligence Review 14(1–2), Kluwer: 23-42.Google Scholar
  155. Wahlster, W. (1998). User and Discourse Models for Multimodal Communication. In Maybury, M. T. & Wahlster, W. (eds.) Readings in Intelligent Yser Interfaces, 359–370. Morgan Kaufmann. Originally published Sullivan, J. W. & Tyler, S. W. (eds.) (1991). Intelligent Yser Interfaces, 45-67. ACM Press.Google Scholar
  156. Wann, J. & Mon-Williams, M. (1996). What does Virtual Reality NEED?: Human Factors Issues in the Design of Three-Dimensional Computer Environments. International Journal of Human-Computer Studies 44: 829–847.Google Scholar
  157. Weiss, G. (1999). Multiagent Systems (A Modern Approach to Distributed Artificial Intelli-gence). The MIT Press.Google Scholar
  158. Weissert, C. (1996). Increased User Satisfaction through Improved Error Messages. Master's Thesis, Department of Computer Science, California State Polytechnic University.Google Scholar
  159. Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge. Morgan Kaufmann Publishers.Google Scholar
  160. Wick, M. R. & Thompson, W. B. (1992). Reconstructive Expert System Explanation. Artificial Intelligence 50: 33–70.Google Scholar
  161. Winograd, T. & Flores, F. (1986). Understanding Computers and Cognition (A New Founda-tion for Design). Reading.Google Scholar
  162. Winograd, T. (ed.) (1996). Bringing Design to Software. Addison-Wesley.Google Scholar
  163. Ye, N. (1997). Neural Networks Approach to User Modelling and Intelligent Interface: A Review and Reappraisal. International Journal of Human-Computer Interaction 9(1): 3–23.Google Scholar
  164. Young, R.L. (1991). A Dialogue User Interface Architecture. In Sullivan, J.W. & Tyler, S. W. (eds.) Intelligent User Interfaces, 157–176. ACM Press.Google Scholar
  165. Zheng, J. M., Chan, K. W. & Gibson, I. (1998). Virtual Reality (A Real World Review on a Somewhat Touchy Subject). IEEE Potentials 17(2): 20–23.Google Scholar
  166. Zhou, Y., Freedman, R., Glass, M., Michael, J. A., Rovick, A. A. & Evens, M. W. (1999). Delivering Hints in a Dialogue-Based Intelligent Tutoring System. Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), 128–134. Orlando, Florida, USA, 18-22 July.Google Scholar
  167. Zukerman, I. & McConachy, R. (1995). Generating Discourse across Several User Models: Maximizing Belief while Avoiding Boredom and Overload Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), vol. 1, 1251–1257. Montréal, Québec, Canada, August 20-25.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Sylvain Delisle
    • 1
  • Bernard Moulin
    • 1
  1. 1.Département de mathématiques et d'informatiqueUniversité du Québec áTrois-Rivières, Trois-Rivières, QuébecCanada

Personalised recommendations