, Volume 114, Issue 2, pp 105–111 | Cite as

Characterization of Diploid, Tetraploid and Hexaploid Helianthus Species by Chromosome Banding and FISH with 45S rDNA Probe

  • André L.L. Vanzela
  • Claudete F. Ruas
  • Marcelo F. Oliveira
  • Paulo M. Ruas


Comparative karyotype analyses of five diploid, two tetraploid, and three hexaploid species of Helianthuswere performed using Feulgen staining, Giemsa C and CMA3 (C-CMA) staining, and FISH with 45S rDNA probe. The karyotypes are composed by a basic number of x = 17 with a predominance of meta- and submetacentric chromosome types. A polyploid series is associated with the basic number. Giemsa C- and C-CMA banding revealed terminal or interstitial heterochromatin according to the species, suggesting the existence of a mechanism that may be acting in the dispersion of heterochromatic segments in Helianthus. The nucleolar organizer regions were located at terminal chromosome positions by FISH with 45S rDNA probe. Diploid species presented four, six, and eight rDNA sites, tetraploid species showed eight sites and hexaploid species presented 12 rDNA sites. Karyomorphological differences include variation in number, size and chromosome morphology, suggesting that rearrangements involving small heterochromatic and rDNA segments played a major role in karyotype evolution.

Chromosome banding Helianthus chromosomes Heterochromatin rDNA FISH Sunflower karyotype evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appels R. & R.L. Honeycutt, 1986. Evolution over a billion years, pp. 81–125 in DNA Systematics II. Plant DNA, edited by S.K. Dutta. CRC Press, Boca Raton, FL.Google Scholar
  2. Chandler J.M., C.C. Jan & B.H. Beard, 1986. Chromosomal differentiation among the annual Helianthus species. System Bot. 11: 354–371.Google Scholar
  3. Cuéllar T., E. Belhassen, B. Fernández-Calvín, J. Orellana & J.L. Bella, 1996. Chromosomal differentiation in Helianthus annuus var. macrocarpus: heterochromatin characterization and rDNA location. Heredity 76: 586–591.Google Scholar
  4. Cuéllar T., J. Orellana, E. Belhassen & J.L. Bella, 1999. Chromosomal characterization and physical mapping of the 5S and the 18S-5.8S-25S ribosomal DNA in Helianthus argophyllus, with new data from Helianthus annuus. Genome 42: 110–115.Google Scholar
  5. Cuadrado A. & N. Jouve, 1994. Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6x-Triticale. Chrom. Res. 2: 231–238.Google Scholar
  6. Dorado O., L.H. Rieseberg & D. Arias, 1992. Chloroplast DNA introgression in southern California sunflowers. Evolution 46: 566–572.Google Scholar
  7. Gerlach W.L. & J.R. Bedbrook, 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl. Acids Res. 7: 1869–1885.Google Scholar
  8. Heiser Jr. C.B., 1965. Species crosses in Helianthus. III. Delimitation of sections. Ann. Missouri Bot. Gard. 52: 364–370.Google Scholar
  9. Heslop-Harrison J.S., T. Schwarzacher, K. Anamthawat-Jonsson, A.R. Leitch, M. Shi & I.J. Leitch, 1991. In situ hybridization with automated chromosome denaturation. Technique 3: 106–109.Google Scholar
  10. Jackson R.C. & B.G. Murray, 1983. Colchicine induced quadrivalent formation in the Helianthus: evidence of ancient polyploidy. Theor. Appl. Genet. 64: 219–222.Google Scholar
  11. Kulshreshtha V.B. & P.K. Gupta, 1981. Cytogenetic studies in the genus Helianthus L. II. Karyological studies in 12 species. Cytologia 46: 279–289.Google Scholar
  12. Leggett J.M. & G.S. Markand, 1995. The genomic identification of some monosomics of Avena sativa L. cv. Sun II using genomic in situ hybridization. Genome 38: 747–751.Google Scholar
  13. Messina R. & M. Biagetti, 1999. Chromosomal localization of rDNA in sunflower (Helianthus annuus L.) by fluorescent in situ hybridization. J. Genet. Breed. 53: 259–261.Google Scholar
  14. Pedersen C. & I. Linde-Laursen, 1994. Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chrom Res. 2: 65–71.Google Scholar
  15. Raicu, V.V., A. Mihãilescu, C. Popescu & M.K. Motz, 1976. Research of the chromosome complement in Helianthus L. genus. Caryol 29: 307–316.Google Scholar
  16. Schilling E.E. & C.B. Heiser Jr., 1981. Infrageneric classification of Helianthus compositae. Taxon 30: 393–403.Google Scholar
  17. Schrader O., R. Ahne, J. Fuchus & I. Schubert, 1997. Karyotype analysis of Helianthus annuus using Giemsa banding and fluorescence in situ hybridization. Chrom. Res. 5: 451–456.Google Scholar
  18. Schwarzacher T., P. Ambros & D. Schweizer, 1980. Application of Giemsa banding to orchid karyotype analysis. Plant Syst. Evol. 134: 293–297.Google Scholar
  19. Schweizer D. & F. Ehrendorfer, 1983. Evolution of C-band patterns in Asteraceae-Anthemideae. Biol. Zbl. 102: 637–655.Google Scholar
  20. Schweizer D. & J. Loidl, 1987. A model for heterochromatin dispersion and the evolution of C-band patterns. Chrom. Today 9: 61–74.Google Scholar
  21. Vaughan H.E., M. Jamilena, C. Ruiz-Rejon, J.S. Parker & M.A. Garrido-Ramos, 1993. Loss of nucleolus-organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71: 574–580.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • André L.L. Vanzela
    • 1
  • Claudete F. Ruas
    • 1
  • Marcelo F. Oliveira
    • 2
  • Paulo M. Ruas
    • 1
  1. 1.Laboratório de Citogenética e Genética Molecular de Plantas, Departamento de Biologia Geral, CCBUniversidade Estadual de LondrinaLondrina, PRBrazil
  2. 2.Embrapa SojaLondrina, ParanáBrazil

Personalised recommendations