Journal of Statistical Physics

, Volume 107, Issue 5–6, pp 945–975 | Cite as

The Asymmetric One-Dimensional Constrained Ising Model: Rigorous Results

  • David Aldous
  • Persi Diaconis


We study a one-dimensional spin (interacting particle) system, with product Bernoulli (p) stationary distribution, in which a site can flip only when its left neighbor is in state +1. Such models have been studied in physics as simple exemplars of systems exhibiting slow relaxation. In our “East” model the natural conjecture is that the relaxation time τ(p), that is 1/(spectral gap), satisfies log τ(p)∼\(\tfrac{{\log ^2 (1/p)}}{{\log 2}}\) as p↓0. We prove this up to a factor of 2. The upper bound uses the Poincaré comparison argument applied to a “wave” (long-range) comparison process, which we analyze by probabilistic techniques. Such comparison arguments go back to Holley (1984, 1985). The lower bound, which atypically is not easy, involves construction and analysis of a certain “coalescing random jumps” process.

constrained Ising model coupling exponential martingale Poincaré inequality relaxation time spectral gap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Jäckle and S. Eisinger, A heirarchically constrained kinetic Ising model, Z. Phys. B 84:115–124 (1991).Google Scholar
  2. 2.
    S. Eisinger and J. Jäckle, Analytical approximations for the hierarchically constrained kinetic Ising chain, J. Statist. Phys. 73:643–670 (1993).Google Scholar
  3. 3.
    F. Mauch and J. Jäckle, Recursive dynamics in an asymmetrically constrained kinetic Ising model, Physica A 262:98–117 (1999).Google Scholar
  4. 4.
    M. A. Muñoz, A. Gabrielli, H. Inaoka, and L. Pietronero, Hierarchical model of slow constrained dynamics, Phys. Rev. E 57:4354–4360 (1998).Google Scholar
  5. 5.
    P. Sollich and M. R. Evans, Glassy time-scale divergence and anomalous coarsening in a kinetically constrained spin chain, Phys. Rev. Lett. 83:3238–3241 (1999).Google Scholar
  6. 6.
    R. A. Holley, Convergence in L 2 of stochastic Ising models: Jump processes and diffusions, in Proc. Taniguchi Symp. Stochastic Analysis, Katata and Kyoto (North-Holland, 1984), pp. 149–167Google Scholar
  7. 7.
    R. Holley, Rapid convergence to equilibrium in one-dimensional Ising models, Ann. Probab. 13:72–89 (1985).Google Scholar
  8. 8.
    P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains, Ann. Appl. Probab. 3:696–730 (1993).Google Scholar
  9. 9.
    G. H. Frederickson and H. C. Andersen, Kinetic Ising models of the glass transition, Phys. Rev. Lett. 53:1244–1247 (1984).Google Scholar
  10. 10.
    S. J. Pitts, T. Young, and H. C. Andersen, Facilitated spin models, mode coupling theory, and ergodic-nonergodic transitions, J. Chem. Phys. 113:8671–8679 (2000).Google Scholar
  11. 11.
    P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab. 1:36–61 (1991).Google Scholar
  12. 12.
    D. Randall and P. Tetali, Analyzing Glauber dynamics by comparison of Markov chains, J. Math. Phys. 41:1598–1615 (2001).Google Scholar
  13. 13.
    F. Martinelli, On the two-dimensional ising model in the phase coexistence region, J. Statist. Phys. 76:1179–1246 (1994).Google Scholar
  14. 14.
    T. M. Liggett, Interacting Particle Systems (Springer-Verlag, 1985).Google Scholar
  15. 15.
    P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues (Springer-Verlag, 1999).Google Scholar
  16. 16.
    F. R. K. Chung, P. Diaconis, and R. L. Graham, Combinatorics for the East model, Adv. in Appl. Math. 27:192–206 (2001).Google Scholar
  17. 17.
    J. D. Biggins, Chernoff's theorem in the branching random walk, J. Appl. Probab. 14:630–636 (1977).Google Scholar
  18. 18.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis (Academic Press, 1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • David Aldous
    • 1
  • Persi Diaconis
    • 2
  1. 1.Department of StatisticsUniversity of CaliforniaBerkeley
  2. 2.Department of StatisticsStanford University

Personalised recommendations