Advertisement

Biochemical Genetics

, Volume 40, Issue 3–4, pp 101–116 | Cite as

Evolutionary Relationships of Flying Foxes (Genus Pteropus) in the Philippines Inferred from DNA Sequences of Cytochrome b Gene

  • S. T. BastianJr.
  • K. Tanaka
  • R. V. P. Anunciado
  • N. G. Natural
  • A. C. Sumalde
  • T. Namikawa
Article

Abstract

Six flying fox species, genus Pteropus (four from the Philippines) were investigated using complete cytochrome b gene sequences (1140 bp) to infer their evolutionary relationships. The DNA sequences generated via polymerase chain reaction were analyzed using the neighbor-joining, parsimony, and maximum likelihood methods. We estimated that the first evolutionary event among these Pteropus species occurred approximately 13.90 ± 1.49 MYA. Within this short period of evolutionary time we further hypothesized that the ancestors of the flying foxes found in the Philippines experienced a subsequent diversification forming two clusters in the topology. The first cluster is composed of P. pumilus (Philippine endemic), P. speciosus (restricted in western Mindanao) with P. scapulatus, while the second one comprised P. vampyrus and P. dasymallus species based on the analysis from first and second codon positions. Consistently, all phylogenetic analyses divulged close association of P. dasymallus with P. vampyrus contradicting the previous report categorizing P. dasymallus under subniger species group with P. pumilus, P. speciosus, and P. hypomelanus. The Philippine endemic species (P. pumilus) is closely linked with P. speciosus. The representative samples of P. vampyrus showed a large genetic distance of 1.87%. The large genetic distance between P. dasymallus and P. hypomelanus, P. pumilus and P. speciosus denotes a distinct species group.

flying foxes Philippine endemic cytochrome b species diversification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alvarez, Y., Juste, J. B., Tabares, E., Garrido-Pertiera, A., Ibanez, C., and Bautista, J. M. (1999). Molecular phylogeny and morphological homoplasy in fruitbats. Mol. Biol. Evol. 16:1061-1067.Google Scholar
  2. Andersen, K. (1912). Catalogue of the Chiroptera in the Collection of the British Museum, Vol. I: Megachiroptera,British Museum of Natural History, London.Google Scholar
  3. Anderson, S., Bankier, A. T., Barrell, B. G., de Brujin, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457-465.Google Scholar
  4. Baker, R. J., Taddie, V. A., Hudgeons, J. L., and Van Den Bussche, R. A. (1994). Systematic relationships within Chiroderma (Chiroptera: Phyllostomidae) based on cytochrome b sequence variation. J. Mammal. 75:321-327.Google Scholar
  5. Barraclough, T. G., and Nee, S. (2001). Phylogenetics and speciation. Trends Ecol. Evol. 16:391-399.Google Scholar
  6. Bastian, S. T., Jr., Tanaka, K., Anunciado, R. V. P., Natural, N. G., Sumalde, A. C., and Namikawa, T. (2001). Phylogenetic relationships among Megachiropteran species from the two major islands of the Philippines, deduced from DNA sequences of cytochrome b gene. Canadian J. Zool. 79:1671-1677.Google Scholar
  7. Chikuni, K., Mori, Y., Tabata, T., Saito, M., Monna, M., and Kosugiyama, M. (1994). Molecular phylogeny based on k-casein and cytochrome b sequences in the mammalian sub-order Ruminantia. J. Mol. Evol. 41:859-866.Google Scholar
  8. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17:368-376.Google Scholar
  9. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.Google Scholar
  10. Felsenstein, J. (1993). Phylip (phylogeny inference package) version 3.572c (Distributed by the author, Department Genetics, University, Washington, Seattle).Google Scholar
  11. Griffiths, C. S. (1997). Correlation of functional domains and rates of nucleotide substitutions in cytochrome b. Mol. Phylo. Evol. 7(3):352-365.Google Scholar
  12. Heaney, L. R. (1986). Biogeography of mammals in SE Asia: Estimates of rates of colonization, extinction and speciation. Biol. J. Linn. Soc. 28:127-165.Google Scholar
  13. Heaney, L. R. (1991). An analysis of patterns of distribution and species richness among Philippine fruit bats (Pteropodidae). Bull. Am. Mus. Nat. Hist. 206:145-167.Google Scholar
  14. Heaney, L. R., Balete, D. S., Dolar, M. L., Alcala, A. C., Dans, A. T. L., Gonzales, P. C., Ingle, N. R., Lepiten, M. V., Oliver, W. L. R., Ong, P. S., Rickart, E. A., Tabaranza, B. R., Jr., and Utzurrum, R. C. B. (1998). A synopsis of the mammalian fauna of the Philippine islands. Fieldiana. Zoology, new series 88:1-61.Google Scholar
  15. Ingle, N. R., and Heaney, L. R. (1992). A key to the bats of the Philippine Islands. Fieldiana. Zoology 69:1-44.Google Scholar
  16. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32:128-144.Google Scholar
  17. Kimura, M. (1980). A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 116:111-120.Google Scholar
  18. Lawrence, B. (1939). Collections from the Philippine Islands. Mammals Bull. Mus. Comp. Zool. Harv. 86:28-73.Google Scholar
  19. Lin, Y.-H., and Penny, D. (2001). Inplications for bat evolution from two new complete mitochondrial genomes. Mol. Biol. Evol. 18:684-688.Google Scholar
  20. Mitchell, A. H. G., Hernandez, F., and De La Cruz, A. P. (1986). Cenozoic evolution of the Philippine Archipelago. J. Souteast Asian Earth Sci. 1:3-22.Google Scholar
  21. Miyamoto, M. M., and Boyle, S. M. (1989). The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In Fernholm, B., Bremer, K., and Jornvall, H. (eds.), The Hierarchy of Life, Elsvier, Amsterdam, pp. 437-450.Google Scholar
  22. Nikaido, M., Harada, M., Cao, Y., Hasegawa, M., and Okada, N. (2000). Monophyletic origin of the Order Chiroptera and its phylogenetic position among Mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryukyu Flying fox (Pteropus dasymallus). J. Mol. Evol. 51:318-328.Google Scholar
  23. Nowak, R. M. (1991).Walker's Mammals of theWorld, The John Hopkins University Press, Baltimore.Google Scholar
  24. Paabo, S. (1989). Ancient DNA extraction, characterization, molecular cloning and enzymatic ampli-fication. Proc. Natl. Acad. Sci. U.S.A. 86:1939-1943.Google Scholar
  25. Rabor, D. S. (1977). Philippine Birds and Mammals, University of the Philippines Press, Quezon City, Philippines.Google Scholar
  26. Rabor, D. S. (1986). Guide to Philippine Flora and Fauna. Birds and Mammals, Ministry of Natural Resources and the University of the Philippines, Quezon City, Philippines.Google Scholar
  27. Savage, D. E., and Russell, D. E. (1983). Mammalian Paleofaunas of the World, Addison-Wesley, Reading, MA.Google Scholar
  28. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.Google Scholar
  29. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  30. Tate, G. H. H. (1942). Results of the Archbold Expedition #48. Pteropodidae (Chiroptera) of the archbold collections. Bull. Am. Mus. Nat. Hist. 80:331-347.Google Scholar
  31. Taylor, B., and Hayes, D. E. (1980). The tectonic evolution of the South China Sea Basin. Geophys. Monogr. Ser. 23:89-104.Google Scholar
  32. Via, S. (2001). Sympatric speciation in animals: The ugly duckling grows up. Trends Ecol. Evol. 16:381-390.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • S. T. BastianJr.
    • 1
    • 2
  • K. Tanaka
    • 1
  • R. V. P. Anunciado
    • 3
  • N. G. Natural
    • 4
  • A. C. Sumalde
    • 5
  • T. Namikawa
    • 1
  1. 1.Laboratory of Animal Genetics, Graduate School of Bioagricultural SciencesNagoya UniversityFurocho, Chikusa, NagoyaJapan
  2. 2.University of the Philippines in MindanaoDavao CityPhilippines
  3. 3.Department of Basic Veterinary SciencesUniversity of the Philippines, Los Baños, CollegeLagunaPhilippines
  4. 4.Institute of Animal ScienceUniversity of the Philippines, Los Baños, CollegeLagunaPhilippines
  5. 5.UPLB Museum of Natural HistoryUniversity of the Philippines, Los Baños, CollegeLagunaPhilippines

Personalised recommendations