Advertisement

Cellular and Molecular Neurobiology

, Volume 21, Issue 6, pp 733–752 | Cite as

Emotion–Perception Interplay in the Visual Cortex: “The Eyes Follow the Heart”

  • Talma Hendler
  • Pia Rotshtein
  • Uri Hadar
Article

Abstract

Emotive aspects of stimuli have been shown to modulate perceptual thresholds. Lately, studies using functional Magnetic Resonance Imaging (fMRI) showed that emotive aspects of visual stimuli activated not only canonical limbic regions, but also sensory areas in the cerebral cortex. However, it is still arguable to what extent such emotive, related activation in sensory areas of the cortex are affected by physical characteristic or attribute difference of stimuli. To manipulate valence of stimuli while keeping visual features largely unchanged, we took advantage of the Expressional Transfiguration (ET) of faces. In addition, to explore the sensitivity of high level visual regions, we compared repeated with unrepeated (i.e. different) stimuli presentations (fMR adaptation). Thus, the dynamics of brain responses was determined according to the relative signal reduction during “repeated” relative to “different” presentations (“adaptation ratio”). Our results showed, for the first time, that emotional valence produced significant differences in fMR adaptation, but not in overall levels of activation of lateral occipital complex (LOC). We then asked whether this emotion modulation on sensory cortex could be related to previous personal experience that attached negative attributes of stimuli. To clarify this, we investigated Posttraumatic Stress Disorder (PTSD) and non-PTSD veterans. PTSD is characterized by recurrent revival of trauma-related sensations. Such phenomena have been attributed to a disturbed processing of trauma-related stimuli, either at the perceptual level or at the cognitive level. We assumed that PTSD veterans would differ from non-PTSD veterans (who have similar combat experience) in their high order visual cortex responses to combat-related visual stimuli that are associated with their traumatic experience. An fMRI study measured the cerebral activation of subjects while viewing pictures with and without combat content, in “repeated” or “different” presentation conditions. The emotive effect on the visual cortex was found, again, only in the fMR-adaptation paradigm. Visual cortical regions showed significant differences between PTSD and non-PTSD veterans only in “repeated” presentations of trauma-related stimuli (i.e. combat). In these regions, PTSD veterans showed less decrease in signal with repeated presentations of the same combat-related stimuli. This finding points to the possibility that traumatic experience modulates brain activity at the level of sensory cortex itself.

emotional modulation high order visual cortex fMRI emotional valence traumatic experience PTSD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adolphs, R.,Tranel, D.,Damasio, H., andDamasio, A. R. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372: 669-672.Google Scholar
  2. Adolphs, R.,Tranel, D.,Damasio, H., andDamasio, A. R. (1995). Fear and the human amygdala. J. Neurosci. 15: 5879-5891.Google Scholar
  3. Aggelton, J. P., andYoung, A. W. (2000). The enigma of the amygdala: On its contribution to human emotion. In Lane, R. D., andNadel, L. (eds.), Cognitive Neuroscience of Emotion, Oxford University Press, New York, pp. 107-128.Google Scholar
  4. Amaral D. G.,Price, J. L.,Pitkanen, A., andCarmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In Aggleton, W. (ed.), The Amygdala Neurobiological Aspects of Emotion, Memory and Mental Dysfunction, Wiley-Liss, New York, pp. 1-66.Google Scholar
  5. American Psychiatric Association. (1987). Diagnostic and Statistical Manual of Mental Disorders, 3rd edn. Rev., American Psychiatric Association, Washington, DC.Google Scholar
  6. Anderson, A. K., andPhelps E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411: 305-309.Google Scholar
  7. Attias J.,Bleich, A., andGilat, S. (1996). Classification of veterans with PTSD using visual evoked P3s to traumatic stimuli. Br. J. Psychiatry 168: 110-115.Google Scholar
  8. Bar, M.,Tootell, R. B. H.,Schacter, D. L.,Greve, D. N.,Fischl, B.,Anders, J. D., andDale, M. (2001). Cortical mechanisms specific to explicit visual object recognition. Neuron 29: 529-535.Google Scholar
  9. Bauer, R. M. (1984). Autonomic recognition of names and faces: A neuropsychological application of guilty knowledge test. Neuropsychologia 22: 457-469.Google Scholar
  10. Bechara, A.,Tranel, D.,Damasio, H.,Adolphs, R.,Rockland, C., andDamasio, A. R. (1995). Double dissociation of conditioned fear and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269: 1115-1118.Google Scholar
  11. Bleich, A.,Attias, J., andFurman, V. (1996). Effect of repeated visual traumatic stimuli on the event related P3 brain potential in PTSD. Int. J. Neurosci. 85: 45-55.Google Scholar
  12. Breiter, H. C.,Etcoff, N. L.,Whalen, P. J.,Kennedy, W. A.,Rauch, S. L.,Buckner, R. L.,Strauss, M. M.,Hyman, S. E., andRosen, B. R. (1996). Response and habituation of human amygdala during visual processing of facial expression. Neuron 17: 875-887.Google Scholar
  13. Bremner D. (1999). Does stress damage the brain? Biol. Psychiatry 45: 797-805.Google Scholar
  14. Broadbant, D. F., andGeregory, M. (1967). Perception of emotionally toned words. Nature 215: 581-584.Google Scholar
  15. Buchel, C.,Morris, J.,Dolan, R. J., andFriston, K. J. (1998). Brain systems mediate aversive conditioning: An event-related fMRI study. Neuron 20: 947-957.Google Scholar
  16. Buckner, R. L.,Goodman, J.,Burock, M.,Rotte, M.,Koutstaal, W.,Schacter, D.,Rosen, B., andDale, A.M. (1998). Functional anatomic correlates of object priming in human revealed by rapid presentation event related fMRI. Neuron 20: 285-296.Google Scholar
  17. Calder, A. J.,Young, A. W.,Rowland, D.,Perrett, I.,Hodges, J. R., andEtcoff, N. L. (1996). Facial emotion recognition after bilateral damage: Differently severe impairment of fear. Cogn. Neuropsychol. 13: 699-745.Google Scholar
  18. Corbetta, M.,Akbudak, E.,Conturo, T. E.,Snyder, A. Z.,Ollinger, J. M.,Drury, H. A.,Lineweber, M. R.,Peterson, S. E.,Raichle, M. E.,Van Essen, D. C., andShulman, G. L. (1998). A common network of functional areas for attention and eye movements. Neuron 21: 761-773.Google Scholar
  19. Critchley, H.,Daly, E.,Phillips, M.,Brammer, M.,Bullmore, E.,Williams, S.,Van Amelsvoort, T.,Robertson, D.,David, A., andMurphy, D. (2000a). Explicit and implicit neural mechanisms for processing of social information from facial expressions: A functional magnetic resonance imaging study. Hum. Brain Mapp. 9: 93-105.Google Scholar
  20. Critchley, H. D.,Elliott, R.,Mathias, C., andDolan, R. (2000b). Neural activity relating to generation and representation of galvanic skin conductance responses: A functional magnetic resonance imaging study. J. Neurosci. 20: 3033-3040.Google Scholar
  21. Davis, M. (1992). The role of the amygdala in fear and anxiety. Ann. Rev. Neurosci. 15: 353-375.Google Scholar
  22. de Gelder, B.,Vroomen, J.,Pourtois, G., andWeiskrantz, L. (1999). Non-conscious recognition of affect in the absence of striate cortex. Neuroreport 10: 3759-3763.Google Scholar
  23. DeYoe, E.,Carman, G.,Bandettini, P.,Glickman, S.,Wieser, J.,Cox, R., andNeitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 93: 2382-2386.Google Scholar
  24. Dolan, R. J., andMorris, J. S. (2000). The functional anatomy of innate and acquired fear: Perspective from neuroscience. In Lane, R. D., andNadel, L. (eds.), Cognitive Neuroscience of Emotion, Oxford University Press, New York, pp. 225-241.Google Scholar
  25. Emery, N. J., andAmaral D. G. (2000). The role of amygdala in primate social cognition. In Lane, R. D., andNadel, L. (eds.), Cognitive Neuroscience of Emotion, Oxford University Press, New York, pp. 156-191.Google Scholar
  26. Friston, K.,Holmes, A. P.,Worsley, K.,Poline, J. B.,Frith, C., andFarckowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain Map. 2: 189-210.Google Scholar
  27. George, M. S.,Ketter, T. A.,Parekh, I.,Horwitz, B.,Herkovitch, P., andPost, R. (1995). Brain activity during transient sadness and happiness in healthy women. Am. J. Psychiatry 152: 341-352.Google Scholar
  28. Goebel, R.,Khorram-Sefat, D.,Muckli, L.,Hacker, H., andSinger, W. (1998a). The constructive nature of vision: Direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur. J. Neurosci. 10: 1563-1573.Google Scholar
  29. Goebel, R.,Linden, D.,Lanfermann, H.,Zanella, F., andZinger, W. (1998b). Functional imaging of mirror and inverse reading reveals separate coactivated networks of oculomotion and spatial transformation. NeuroReport 9: 713-719.Google Scholar
  30. Grill-Spector, K.,Kushnir, T.,Edelman, S.,Avidan, G.,Itzchak, Y., andMalach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24: 187-203.Google Scholar
  31. Grill-Spector, K.,Kushnir, T.,Edelman, S.,Itzchak, Y., andMalach, R. (1998b). Cue invariant activation in object related area of the human occipital lobe. Neuron 21: 191-202.Google Scholar
  32. Grill-Spector, K.,Kushnir, T.,Hendler, T.,Edelman, S.,Itzchak, Y., andMalach, R. (1998a). Asequence of object processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp. 6: 316-328.Google Scholar
  33. Grill-Spector, K.,Kushnir, T.,Hendler, T., andMalach, R. (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nature Neurosci. 3: 837-843.Google Scholar
  34. Grill-Spector, K., andMalach, R. (2001). fMR adaptation: A tool for studying the functional properties of cortical neurons. Acta Psychol. 107: 293-321.Google Scholar
  35. Haley, R. W.,Marshall, W. W.,McDonald, G. G.,Daugherty, M. A.,Petty, F., andFleckenstein, J. L. (2000). Brain abnormalities in gulf war syndrome: evaluation with H1 MR spectroscopy. Radiology 215: 807-817.Google Scholar
  36. Hendler, T.,Rotshtein, P.,Yeshurun, Y.,Weizman, T.,Kahn, I.,Ben-Bashat, D.,Malach, R., andBleich, A. (2001). The effect of perception threshold on brain processing of combat related visual stimuli in veterans. Neuroimage 13( 6): S1020.Google Scholar
  37. Ishai, A.,Ungerleider, L. G.,Martin, A.,Maisog, J. M., andHaxby, J. V. (1997). fMRI reveals differential activation in the ventral vision pathways during perception of faces, houses and chairs. Neuroimage 5: S149.Google Scholar
  38. Jiang, Y.,Haxby, J.V.,Martin, A.,Ungerleider, L.G., andParasuraman, R. (2000). Complementary neural mechanisms for tracking items in human working memory. Science 287: 643-646.Google Scholar
  39. Kanwisher, N. (2001) Domain specificity in face perception. Nat. Neurosci. 3: 759-763.Google Scholar
  40. Kanwisher, N.,Mcdermott, J., andChun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 17: 4302-4311.Google Scholar
  41. Kosslyn, S. M.,Shin, L. M.,Thompson, W. L.,McNally, R. J.,Rauch, S. L.,Pitman, R. K., andAlpert, N. M. (1996). Neural effects of visualizing and perceiving aversive stimuli: A PET investigation. NeuroReport 7: 1569-1576.Google Scholar
  42. LaBar, K. S.,Ledoux, J. E.,Spencer, D.D., andPhelps, E.A. (1995). Impaired fear conditioning following unilateral temporal lobectomy. J. Neurosci. 15: 6846-6855.Google Scholar
  43. Lane, R. D.,Chau, P., andDolan, R. (1999). Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia 37: 989-997.Google Scholar
  44. Lane, R. D.,Reiman, E. M.,Bradley, M. M.,Lang, P. J.,Ahern, G. L.,Davidson, R. J., andSchwartz, G. E. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35: 1437-1444.Google Scholar
  45. Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. Am. Psychol. 50: 372-385.Google Scholar
  46. Lang, P. J.,Bragley, M. M.,Fizsimmons, J.R.,Cuthbert, B. N.,Scott, J.,Moulder, B., andNangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology 35: 199-210.Google Scholar
  47. Lang, P. J.,Fitzsimmons, J. R.,Bradley, M. M.,Cuthbert, B. N., andScott, J. (1996). Processing emotional pictures: Differential activation in primary visual cortex. NeuroImage 3: S231.Google Scholar
  48. Ledoux, J. E. (1996). The Emotional Brain: The Mysterious Underpinning of Emotional Life, Simon and Shuster, New York.Google Scholar
  49. Ledoux, J. E. (2000). Cognitive-emotional interactions: listening to the brain. In Lane, R.D., andNadel, L., (eds.), Cognitive Neuroscience of Emotion, Oxford University Press, New York, pp. 129-155.Google Scholar
  50. Lerner, Y.,Hendler, T.,Ben-Baashat, D.,Harel, M., andMalach, R. (2001). A hierarchical axis of object processing stages in the human visual cortex. Cereb. Cortex 11: 287-297.Google Scholar
  51. Malach, R.,Reppas, J.,Benson, R.,Kwong, K.,Jiang, H.,Kennedy, W.,Ledden, P.,Brady, T.,Rosen, B., andTootell, R. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. U.S.A. 92: 8135-8139.Google Scholar
  52. Miller, E. R.,Li, L., andDesimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short term memory task. J. Neurosci. 13: 1460-1478.Google Scholar
  53. Morgan, C., andGrillon, C. (1999). Abnormal mismatch negativity in woman with sexual assault-related PTSD. Biol. Psychiatry 45: 827-832.Google Scholar
  54. Morris, J. S.,Friston, K. J.,Buechel, C.,Frith, C. D.,Young, A. W.,Calder, A. J., andDolan, R. J. (1998). A neuromodulatory role for the amygdala in processing emotional facial expression. Brain 121: 47-57.Google Scholar
  55. Morris, J. S.,Fritch, C. D.,Perrett, D. I.,Rowland, D.,Young, A.W.,Calder, A. J., andDolan, R. J. (1996). A differential neural response in the human amygdal to fearful and happy face expression. Nature 383: 812-815.Google Scholar
  56. Newport, D. J., andNemeroff, C. B. (2000). Neurobiology of PTSD. Curr. Opin. Neurobiol. 10: 211-218.Google Scholar
  57. Niedenthal, P. M., andKitayama, S. (eds.). (1994). The Heart's Eye: Emotional Influences in Perception and Attention, Academic Press, New York.Google Scholar
  58. Ohman, A.,Eriksson, A.,Fredrikson, M.,Hugdahl, K., andOlofsson, C. (1974). Habituation of electrodernal orienting reaction to potentially phobic and supposedly neutral stimuli in normal human. Biol. Psychol. 2: 85-93.Google Scholar
  59. Phillips, M. L.,Young, A. W.,Senior, C.,Brammer, M.,Andrew, C., andCalder, A. J. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature 389: 495-498.Google Scholar
  60. Rauch, S. L.,van der Kolk, B.,Fisler, R. E.,Alpert, N. M.,Orr, S. P.,Savage, R. C.,Fischman, A. J., andPitman, R. K. (1966). A symptom provocation study of PTSD using PET and script driven imagery. Arch. Gen. Psychiatry 53: 380-387.Google Scholar
  61. Reiman, E. M.,Lane, R. D.,Ahern, G. L.,Schwartz, G. E.,Davidson, R. J.,Friston, K. J.,Yun, L. S., andChen, K. (1997). Neuroanatomical correlates of externally and internally generated human emotion. Am. J. Psychiatry 154: 918-925.Google Scholar
  62. Rolls, E. T. (2000). Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27: 205-218.Google Scholar
  63. Rolls, E. T.,Judge, S. J., andSanaghera, M. K. (1977). Activity of neurons in the inferotemporal cortex of alert monkey. Brain Res. 130: 121-135.Google Scholar
  64. Rotshtein, P.,Malach, R.,Hadar, U.,Grai, M., andHendler, T. (2001). Feeling or features: different sensitivity to emotion in high-order visual cortex and amygdala. Neuron 32: 747-757.Google Scholar
  65. Sugase, Y.,Yamane, S.,Ueno, S., andKawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature 400: 869-873.Google Scholar
  66. Talairach, J., andTournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain, Theime Medical Publishing, New York.Google Scholar
  67. Taylor, S. F.,Liberzon, I.,Fig, L. M.,Decker, L. R.,Minoshima, S., andKoeppe, R. A. (1998). The effect of emotional content on visual recognition memory: A PET activation study. Neurolmage 8: 188-197.Google Scholar
  68. Taylor, S. F.,Liberzon, I., andKoeppe, R. A. (2000). The effect of graded aversive stimuli on limbic activation. Neuropsychologia 38: 1415-1425.Google Scholar
  69. Thompson, P. (1980). Margaret Thatcher: A new illusion. Perception 9: 483-484.Google Scholar
  70. Thrasher, S. M.,Dalglish, T., andYule, W. (1994). Information processing in PTSD. Behav. Res. Ther. 32: 247-254.Google Scholar
  71. Tootell, R.,Dale, A.,Sereno, M., andMalach, R. (1996). New images from human visual cortex. Trends Neurosci. 19: 481-489.Google Scholar
  72. Tranel, D., andDamasio, A.R. (1988). Non-conscious face recognition in patients with face agnosia. behav. Brain Res. 30: 235-249.Google Scholar
  73. Vuileumier, P.,Armony, J. L.,Driver, J., andDolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event related fMRI study. Neuron 30: 829-841.Google Scholar
  74. Watt, C. A., andMorris, R. L. (1995). The relationship among performance on a prototype indicator of perceptual defense/vigilance personality, and extrasensory perception. Pers. Indiv. Diff. 19( 5): 635-648.Google Scholar
  75. Wheeler, M. E.,Peterson, S. E., andBuckner,R. L. (2000). Memory's echo:Vivid remembering reactivates sensory-specific cortex. PANS 97: 11125-11129.Google Scholar
  76. Wiggs, C. R., andMartin, A. (1988). Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8: 227-233.Google Scholar
  77. Young, A. W.,Aggleton, J. P.,Hellawell, D. J.,Johnson, M.,Broks, P., andHanley, J. R. (1995). Face processing impairments after amygdalotomy. Brain 118: 15-24.Google Scholar
  78. Young, A.W.,Hellawell, D. J.,Van deWal, C., andJohnson, M. (1996). Facial expression processing after amygdalalotomy. Neuropsychologia 34: 31-39.Google Scholar
  79. Young, A. W.,Newcombe, F.,de-Haan, E. H. F.,Small, M., andHay, D. C. (1993). Face perception after brain injury: Selective impairments affecting identity and expressions. Brain 116: 941-959.Google Scholar
  80. Zeitlin, S. B., andMcNally, R. J. (1991). Implicit and explicit memory bias for threat in PTSD Behav. Res. Ther. 29: 451-457.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Talma Hendler
    • 1
    • 2
  • Pia Rotshtein
    • 1
    • 3
  • Uri Hadar
    • 3
  1. 1.Wohl Institute for Advanced Imaging, Functional Brain Imaging LaboratoryTel Aviv Sourasky Medical CenterTel AvivIsrael
  2. 2.Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Department of PsychologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations