Journal of Scientific Computing

, Volume 17, Issue 1–4, pp 437–446 | Cite as

A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations

  • Yvon Maday
  • Anthony T. Patera
  • Gabriel Turinici


We consider “Lagrangian” reduced-basis methods for single-parameter symmetric coercive elliptic partial differential equations. We show that, for a logarithmic-(quasi-)uniform distribution of sample points, the reduced–basis approximation converges exponentially to the exact solution uniformly in parameter space. Furthermore, the convergence rate depends only weakly on the continuity-coercivity ratio of the operator: thus very low-dimensional approximations yield accurate solutions even for very wide parametric ranges. Numerical tests (reported elsewhere) corroborate the theoretical predictions.

reduced basis method interpolation methods exponential convergence 


  1. 1.
    Almroth, B. O., Stern, P., and Brogan, F. A. (1978). Automatic choice of global shape functions in structural analysis. AIAA J. 16, 525–528.Google Scholar
  2. 2.
    Balmes, E. (1996). Parametric families of reduced finite element models. Theory and applications. Mech. Syst. Signal Process. 10(4), 381–394.Google Scholar
  3. 3.
    Barrett, A., and Reddien, G. (1995). On the reduced basis method, Math. Mech. 7(75), 543–549.Google Scholar
  4. 4.
    Dahlquist, G., and Björck, Å. (1974). “Numerical Methods”, Prentice-Hall, p. 100.Google Scholar
  5. 5.
    Fink, J. P., and Rheinboldt, W. C. (1983). On the error behaviour of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63, 21–28.Google Scholar
  6. 6.
    Machiels, L., Maday, Y., Oliveira, I. B., Patera, A. T., and Rovas, D. V. (2000). Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. CR Acad. Sci. Paris 331, Série I, 153–158.Google Scholar
  7. 7.
    Maday, Y., Machiels, L., Patera, A. T., and Rovas, D. V. (2001). Blackbox reduced-basis output bound methods for shape optimization. In Chan, T., Kako, T., Kawarada, H., Pironneau, O. (eds.), Proceedings 12th International Conference on Domain Decomposition Methods, DDM. org.Google Scholar
  8. 8.
    Maday, Y., Patera, A. T., and Rovas, D. V. (2002). A Blackbox Reduced-Basis Output Bound Method for Noncoercive Linear Problems, Nonlinear Partial Differential Equations and Their Applications, College De France Seminar.Google Scholar
  9. 9.
    Matache, A.-M., Babuška, I., and Schwab, C. (2000). Generalized p-FEM in homogenization. Numer. Math. 86(2), pp. 319–375.Google Scholar
  10. 10.
    Matache, A.-M., and Schwab, C. (2000). Homogenization via p-FEM for problems with microstructure. Proceedings of the Fourth International Conference on Spectral and High Order Methods (ICOSAHOM 1998) (Herzliya), Appl. Numer. Math., Vol. 33, pp. 43–59.Google Scholar
  11. 11.
    Noor, A. K., and Peters, J. M. (1980). Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462.Google Scholar
  12. 12.
    Peterson, J. S. (1989). The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10(4), 777–786.Google Scholar
  13. 13.
    Prud'homme, C., Rovas, D. V., Veroy, K., Machiels, L., Maday, Y., Patera, A. T., and Turinici, G. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engrg. To appear.Google Scholar
  14. 14.
    Rheinboldt, W. C. (1993). On the theory and error estimation of the reduced basis method for multi-parameter problems. Nonlinear Anal. 21(11), 849–858.Google Scholar
  15. 15.
    Strang, W. G., and Fix, G. J. (1973). An Analysis of the Finite Element Method, Wellesley-Cambridge Press.Google Scholar
  16. 16.
    Veroy, K. (2003). Reduced Basis Methods Applied to Problems in Elasticity: Analysis and Applications, Ph.D. thesis, Massachusetts Institute of Technology. In progress.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Yvon Maday
    • 1
  • Anthony T. Patera
    • 2
  • Gabriel Turinici
    • 3
  1. 1.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie Curie, Boîte courrier 187ParisFrance
  2. 2.Department of Mechanical EngineeringM.I.T.Cambridge
  3. 3.ASCI-CNRS Orsay, and INRIA Rocquencourt M3N, B.P. 105Le ChesnayFrance

Personalised recommendations