Cellular and Molecular Neurobiology

, Volume 21, Issue 6, pp 617–627 | Cite as

Harnessing the Immune System for Neuroprotection: Therapeutic Vaccines for Acute and Chronic Neurodegenerative Disorders

  • Michal Schwartz
Article

Abstract

Nerve injury causes degeneration of directly injured neurons and the damage spreads to neighboring neurons. Research on containing the damage has been mainly pharmacological, and has not recruited the immune system. We recently discovered that after traumatic injury to the central nervous system (spinal cord or optic nerve), the immune system apparently recognizes certain injury-associated self-compounds as potentially destructive and comes to the rescue with a protective antiself response mediated by a T-cell subpopulation that can recognize self-antigens. We further showed that individuals differ in their ability to manifest this protective autoimmunity, which is correlated with their ability to resist the development of autoimmune diseases. This finding led us to suggest that the antiself response must be tightly regulated to be expressed in a beneficial rather than a destructive way. In seeking to develop a neuroprotective therapy by boosting the beneficial autoimmune response to injury-associated self-antigens, we looked for an antigen that would not induce an autoimmune disease. Candidate vaccines were the safe synthetic copolymer Cop-1, known to cross-react with self-antigens, or altered myelin-derived peptides. Using these compounds as vaccines, we could safely boost the protective autoimmune response in animal models of acute and chronic insults of mechanical or biochemical origin. Since this vaccination is effective even when given after the insult, and because it protects against the toxicity of glutamate (the most common mediator of secondary degeneration), it can be used to treat chronic neurodegenerative disorders such as glaucoma, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.

neuroprotection CNS insult autoimmunity therapeutic vaccination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aloisi, F.,Ria, F., andAdorini, L. (2000). Regulation of T-cell responses by CNS antigen-presenting cells: Different roles for microglia and astrocytes. Immunol. Today 21: 141-147.Google Scholar
  2. Aloisi, F.,Ria, F.,Columba-Cabezas, S.,Hess, H.,Penna, G., andAdorini, L. (1999). Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4C T cell priming and Th1/Th2 cell restimulation. Eur. J. Immunol. 29: 2705-2714.Google Scholar
  3. Barouch, R.,Appel, E.,Kazimirsky, G.,Braun, A.,Renz, H., andBrodie, C. (2000). Differential regulation of neurotrophin expression by mitogens and neurotransmitters in mouse lymphocytes. J. Neuroimmunol. 103: 112-121.Google Scholar
  4. Barouch, R.,Appel, E.,Kazimirsky, G., andBrodie, C. (2001a). Macrophages express neurotrophins and neurotrophin receptors. Regulation of nitric oxide production by NT-3. J. Neuroimmunol. 112: 72-77.Google Scholar
  5. Barouch, R.,Kazimirsky, G.,Appel, E., andBrodie, C. (2001b). Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAP kinase activation. J. Leukoc. Biol. 69: 1019-1026.Google Scholar
  6. Barouch, R., andSchwartz, M. (2001). Autoreactive T cells induce neurotrophin production by immune and neural cells in the injured optic nerve: Correlation to protective autoimmunity. Submitted.Google Scholar
  7. Bethea, J. R.,Castro, M.,Keane, R.W.,Lee, T. T.,Dietrich, W. D., andYezierski, R. P. (1998). Traumatic spinal cord injury induces nuclear factor-kappaB activation. J. Neurosci. 18: 3251-3260.Google Scholar
  8. Braun, A.,Appel, E.,Baruch, R.,Herz, U.,Botchkarev, V.,Paus, R.,Brodie, C., andRenz, H. (1998). Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. Eur. J. Immunol. 28: 3240-3251.Google Scholar
  9. Bruno, V.,Scapagnini, U., andCanonico, P. L. (1993). Excitatory amino acids and neurotoxicity. Funct. Neurol. 8: 279-292.Google Scholar
  10. Butovsky, O.,Hauben, E., andSchwartz, M. (2001). Morphological aspects of spinal cord autoimmune neuroprotection: Colocalization of T cells with B7-2 (CD86) and prevention of cyst formation. FASEB J. 15: 1065-1067.Google Scholar
  11. Connaughton, V. P.,Behar, T. N.,Liu, W. L., andMassey, S. C. (1999). Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Vis. Neurosci. 16: 483-490.Google Scholar
  12. Constantini, S., andYoung, W. (1994). The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J. Neurosurg. 80: 97-111.Google Scholar
  13. Cserr, H. F.,Harling-Berg, C. J., andKnopf, P. M. (1992). Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2: 269-276.Google Scholar
  14. Cserr, H. F., andKnopf, P. M. (1992). Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: A new view. Immunol. Today 13: 507-512.Google Scholar
  15. Davanger, S.,Ottersen,O. P., andStorm-Mathisen, J. (1991). Glutamate,GABA, and glycine in the human retina: An immunocytochemical investigation. J. Comp. Neurol. 311: 483-494.Google Scholar
  16. Dougherty, K. D.,Dreyfus, C. F., andBlack, I. B. (2000). Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol. Dis. 7: 574-585.Google Scholar
  17. Ehrhard, P. B.,Erb, P.,Graumann, U., andOtten, U. (1993). Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc. Natl. Acad. Sci. U.S.A 90: 10984-10988.Google Scholar
  18. Elkabes, S.,Peng, L., andBlack, I. B. (1998). Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J. Neurosci. Res. 54: 117-122.Google Scholar
  19. Faden, A. I.,Ivanova, S. A.,Yakovlev, A. G., andMukhin, A. G. (1997). Neuroprotective effects of group III mGluR in traumatic neuronal injury. J. Neurotrauma 14: 885-895.Google Scholar
  20. Flugel, A.,Schwaiger, F. W.,Neumann, H.,Medana, I.,Willem, M.,Wekerle, H.,Kreutzberg, G. W., andGraeber, M. B. (2000). Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol. 10: 353-364.Google Scholar
  21. Goverman, J.,Brabb, T.,Paez, A.,Harrington, C., andvon Dassow, P. (1997). Initiation and regulation of CNS autoimmunity. Crit. Rev. Immunol. 17: 469-480.Google Scholar
  22. Hammarberg, H.,Lidman, O.,Lundberg, C.,Eltayeb, S. Y.,Gielen, A. W.,Muhallab, S.,Svenningsson, A.,Linda, H.,van Der Meide, P. H.,Cullheim, S.,Olsson, T., andPiehl, F. (2000). Neuroprotection by encephalomyelitis: Rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J. Neurosci. 20: 5283-5291.Google Scholar
  23. Hauben, E.,Agranov, E.,Gothilf, A.,Nevo, U.,Cohen, A.,Smirnov, I.,Steinman, L., andSchwartz, M. (2001). Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J. Clin. Invest. 108: 591-599.Google Scholar
  24. Hauben, E.,Butovsky, O.,Nevo, U.,Yoles, E.,Moalem, G.,Agranov, E.,Mor, F.,Leibowitz-Amit, R.,Pevsner, E.,Akselrod, S.,Neeman, M.,Cohen, I. R., andSchwartz, M. (2000a). Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci. 20: 6421-6430.Google Scholar
  25. Hauben, E.,Nevo, U.,Yoles, E.,Moalem, G.,Agranov, E.,Mor, F.,Akselrod, S.,Neeman, M.,Cohen, I. R., andSchwartz, M. (2000b). Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355: 286-287.Google Scholar
  26. Hickey, W. F.,Hsu, B. L., andKimura, H. (1991). T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28: 254-260.Google Scholar
  27. Hirschberg, D. L.,Moalem, G.,He, J.,Mor, F.,Cohen, I. R., andSchwartz, M. (1998). Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J. Neuroimmunol. 89: 88-96.Google Scholar
  28. Hirschberg, D. L., andSchwartz, M. (1995). Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: A basis for an immune-brain barrier. J. Neuroimmunol. 61: 89-96.Google Scholar
  29. Hirschberg, D. L.,Yoles, E.,Belkin, M., andSchwartz, M. (1994). Inflammation after axonal injury has conflicting consequences for recovery of function: Rescue of spared axons is impaired but regeneration is supported [see comments]. J. Neuroimmunol. 50: 9-16.Google Scholar
  30. Ibanez, C. F. (1995). Neurotrophic factors: From structure-function studies to designing effective therapeutics. Trends Biotechnol. 13: 217-227.Google Scholar
  31. Jojich, L., andPourcho, R. G. (1996). Glutamate immunoreactivity in the cat retina: A quantitative study. Vis. Neurosci. 13: 117-133.Google Scholar
  32. Kerschensteiner, M.,Gallmeier, E.,Behrens, L.,Leal, V. V.,Misgeld, T.,Klinkert, W. E.,Kolbeck, R.,Hoppe, E.,Oropeza-Wekerle, R. L.,Bartke, I.,Stadelmann, C.,Lassmann, H.,Wekerle, H., andHohlfeld, R. (1999). Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J. Exp. Med. 189: 865-870.Google Scholar
  33. Kipnis, J.,Yoles, E.,Porat, Z.,Cohen, A.,Mor, F.,Sela, M.,Cohen, I. R., andSchwartz, M. (2000). T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc. Natl. Acad. Sci. U.S.A. 97: 7446-7451.Google Scholar
  34. Kipnis, J.,Yoles, E.,Schori, H.,Hauben, E.,Shaked, I., andSchwartz, M. (2001). Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J. Neurosci. 21: 4564-4571.Google Scholar
  35. Klocker, N.,Kermer, P.,Weishaupt, J. H.,Labes, M.,Ankerhold, R., andBahr, M. (2000). Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-30-kinase/protein kinase B signaling. J. Neurosci. 20: 6962-6967.Google Scholar
  36. Kuchroo, V. K.,Das,M. P.,Brown, J. A.,Ranger, A. M.,Zamvil, S. S.,Sobel, R. A.,Weiner, H. L.,Nabavi, N., andGlimcher, L. H. (1995). B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy. Cell 80: 707-718.Google Scholar
  37. Lazarov-Spiegler, O.,Solomon, A. S.,Zeev-Brann, A. B.,Hirschberg, D. L.,Lavie, V., andSchwartz, M. (1996). Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10: 1296-1302.Google Scholar
  38. Levkovitch-Verbin, H.,Harris-Cerruti, C.,Groner, Y.,Wheeler, L. A.,Schwartz, M., andYoles, E. (2000). RGC death in mice after optic nerve crush injury: Oxidative stress and neuroprotection. Invest. Ophthalmol. Vis. Sci. 41: 4169-4174.Google Scholar
  39. Lotan, M., andSchwartz, M. (1994). Cross talk between the immune system and the nervous system in response to injury: Implications for regeneration. FASEB J. 8: 1026-1033.Google Scholar
  40. Marc, R. E.,Liu, W. L.,Kalloniatis, M.,Raiguel, S. F., andvan Haesendonck, E. (1990). Patterns of glutamate immunoreactivity in the goldfish retina. J. Neurosci. 10: 4006-4034.Google Scholar
  41. Matyszak, M. K., andPerry, V.H. (1995). Demyelination in the central nervous system following a delayedtype hypersensitivity response to bacillus Calmette-Guerin. Neuroscience 64: 967-977.Google Scholar
  42. Matyszak, M. K.,Townsend, M. J., andPerry, V.H. (1997). Ultrastructural studies of an immune-mediated inflammatory response in the CNS parenchyma directed against a non-CNS antigen. Neuroscience 78: 549-560.Google Scholar
  43. McIntosh, T. K. (1993). Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: A review. J. Neurotrauma 10: 215-261.Google Scholar
  44. Miwa, T.,Furukawa, S.,Nakajima, K.,Furukawa, Y., andKohsaka, S. (1997). Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J. Neurosci. Res. 50: 1023-1029.Google Scholar
  45. Moalem, G.,Gdalyahu, A.,Shani, Y.,Otten, U.,Lazarovici, P.,Cohen, I. R., andSchwartz, M. (2000). Production of neurotrophins by activated T cells: Implications for neuroprotective autoimmunity. J. Autoimmun. 15: 331-345.Google Scholar
  46. Moalem, G.,Leibowitz-Amit, R.,Yoles, E.,Mor, F.,Cohen, I. R., andSchwartz. M. (1999a). Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5: 49-55.Google Scholar
  47. Moalem, G.,Monsonego, A.,Shani, Y.,Cohen, I. R., andSchwartz, M. (1999b). DifferentialTcell response in central and peripheral nerve injury: Connection with immune privilege. FASEB J. 13: 1207-1217.Google Scholar
  48. Monsonego, A.,Beserman, Z. P.,Yoles, E.,Weiner, H. L., andSchwartz. M. (2001). Oral administration of myelin basic protein attenuates posttraumatic CNS degeneration. Submitted.Google Scholar
  49. Muir, K. W., andLees, K. R. (1995). Clinical experience with excitatory amino acid antagonist drugs. Stroke 26: 503-513.Google Scholar
  50. Nakao, N., andBrundin, P. (1998). Neurodegeneration and glutamate induced oxidative stress. Prog. Brain. Res. 116: 245-263.Google Scholar
  51. Netland, P. A.,Chaturvedi, N., andDreyer, E. B. (1993). Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am. J. Ophthalmol. 115: 608-613.Google Scholar
  52. Novikova, L. N.,Novikov, L. N., andKellerth, J. O. (2000). Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur. J. Neurosci. 12: 776-780.Google Scholar
  53. Olney, J.W. (1994a). Excitatory transmitter neurotoxicity. Neurobiol. Aging 15: 259-260.Google Scholar
  54. Olney, J. W. (1994b). New mechanisms of excitatory transmitter neurotoxicity. J. Neural Transm. 43 (Suppl): 47-51.Google Scholar
  55. Otten, U.,Scully, J. L.,Ehrhard, P. B.,Gadient, R. A. (1994). Neurotrophins: Signals between the nervous and immune systems. Prog. Brain Res. 103: 293-305.Google Scholar
  56. Perry, V. H.,Brown, M. C., andGordon, S. (1987). The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J. Exp. Med. 165: 1218-1223.Google Scholar
  57. Popovich, P. G.,Guan, Z.,Wei, P.,Huitinga, I.,van Rooijen, N., andStokes, B. T. (1999). Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158: 351-365.Google Scholar
  58. Povlishock, J. T., andChristman, C. W. (1995). The pathobiology of traumatically induced axonal injury in animals and humans: A review of current thoughts. J. Neurotrauma. 12: 555-564.Google Scholar
  59. Rapalino, O.,Lazarov-Spiegler, O.,Agranov, E.,Velan, G. J.,Yoles, E.,Fraidakis, M.,Solomon, A.,Gepstein, R.,Katz, A.,Belkin, M.,Hadani, M., andSchwartz, M. (1998). Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4: 814-821.Google Scholar
  60. Schori, H.,Kipnis, J.,Yoles, E.,WoldeMussie, E.,Ruiz, G.,Wheeler, L. A., andSchwartz, M. (2001a). Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma. Proc. Natl. Acad. Sci. U.S.A. 98: 3398-3403.Google Scholar
  61. Schori, H.,Shachar, I., andSchwartz, M. (2001b). B cells have an adverse effect on neuronal survival from glutamate toxicity. Submitted.Google Scholar
  62. Schori, H., Yoles, E., and Schwartz, M. (in press). T-cell-based immunity couteracts potential toxicity of glutamate in the central nervous system. J. Neuroimmunol. Google Scholar
  63. Schwartz, M. (2000). Beneficial autoimmune T cells and posttraumatic neuroprotection. Ann. N. Y. Acad. Sci. 917: 341-347.Google Scholar
  64. Schwartz, M. (2001). Physiological approaches to neuroprotection. Boosting of protective autoimmunity. Surv. Ophthalmol. 45(Suppl. 3): S256-S260. (Discussion, S273-S256).Google Scholar
  65. Schwartz, M.,Belkin, M.,Yoles, E., andSolomon, A. (1996). Potential treatment modalities for glaucomatous neuropathy: Neuroprotection and neuroregeneration. J. Glaucoma. 5: 427-432.Google Scholar
  66. Schwartz, M., andKipnis, J. (2001). Protective autoimmunity: Regulation and prospects for vaccination after brain and spinal cord injuries. Trends Mol. Med. 7: 252-258.Google Scholar
  67. Schwartz, M.,Moalem, G.,Leibowitz-Amit, R., andCohen, I. R. (1999). Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci. 22: 295-299.Google Scholar
  68. Schwartz, M.,Yoles, E. (2000). Neuroprotection: A new treatment modality for glaucoma? Curr. Opin. Ophthalmol. 11: 107-111.Google Scholar
  69. Shrikant, P., andBenveniste, E. N. (1996). The central nervous system as an immunocompetent organ: Role of glial cells in antigen presentation. J. Immunol. 157: 1819-1822.Google Scholar
  70. Stockinger, B.,Zal, T.,Zal, A., andGray, D. (1996). B cells solicit their own help from T cells. J. Exp. Med. 183: 891-899.Google Scholar
  71. Sucher, N. J.,Lipton, S. A., andDreyer, E. B. (1997). Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 37: 3483-3493.Google Scholar
  72. Weiner, H. L. (2001). Oral tolerance: Immune mechanisms and the generation of Th3-type TGF-betasecreting regulatory cells. Microbes. Infect. 3(11): 947-54.Google Scholar
  73. Yoles, E.,Hauben, E.,Palgi, O.,Agranov, E.,Gothilf, A.,Cohen, A.,Kuchroo, V.,Cohen, I. R.,Weiner, H., andSchwartz, M. (2001). Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21: 3740-3748.Google Scholar
  74. Yoles, E.,Muller, S., andSchwartz, M. (1997). NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush [published erratum appears in J. Neurotrauma. 1999 Apr;16(4):345]. J. Neurotrauma 14: 665-675.Google Scholar
  75. Yoles, E., andSchwartz, M. (1998). Degeneration of spared axons following partial white matter lesion: Implications for optic nerve neuropathies. Exp. Neurol. 153: 1-7.Google Scholar
  76. Yoles, E.,Wheeler, L. A., andSchwartz, M. (1999). Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest. Ophthalmol. Vis. Sci. 40: 65-73.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Michal Schwartz
    • 1
  1. 1.Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations