Genetica

, Volume 114, Issue 2, pp 183–194 | Cite as

Genetic Relatedness Among Dioecious Ficus carica L. cultivars by Random Amplified Polymorphic DNA Analysis, and Evaluation of Agronomic and Morphological Characters

  • Kalliopi Papadopoulou
  • Constantinos Ehaliotis
  • Maria Tourna
  • Petros Kastanis
  • Ioannis Karydis
  • Georgios Zervakis
Article

Abstract

A collection of 64 fig (Ficus carica L.) accessions was characterized through the use of RAPD markers, and results were evaluated in conjunction with morphological and agronomical characters, in order to determine the genetic relatedness of genotypes with diverse geographic origin. The results indicate that fig cultivars have a rather narrow genetic base. Nevertheless, RAPD markers could detect enough polymorphism to differentiate even closely related genotypes (i.e., clones of the same cultivar) and a unique fingerprint for each of the genotypes studied was obtained. No wasteful duplications were found in the collection. Cluster analysis allowed the identification of groups in accordance with geographic origin, phenotypic data and pedigree. Taking into account the limited information concerning fig cultivar development, the results of this study, which provide information on the genetic relationships of genetically distinct material, dramatically increase the fundamental and practical value of the collection and represent an invaluable tool for fig germplasm management.

Cultivar identification Ficus caricaFig Genetic variability RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostol, B.L., W.C. Black, B.R. Miller & P. Reiter, 1996. Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity 76: 325–334.Google Scholar
  2. Armstrong, J., A. Gibbs, R. Peakall & G. Weiler, 1996. RAPDistance programs: version 1.04 for the analysis of patterns of RAPD fragments. Australian National University, Canberra.Google Scholar
  3. Beck, N.G. & E.M. Lord, 1988a. Breeding system in Ficus carica, the common fig. I. Floral diversity. Am. J. Bot. 75: 1906–1912.Google Scholar
  4. Beck, N.G. & E.M. Lord, 1988b. Breeding system in Ficus carica, the common fig. II. Pollination events. Am. J. Bot. 75: 1913–1922.Google Scholar
  5. Cabrita, L.F., U. Aksoy, S. Hepaksoy & J.M. Leitao, 2001. Suitability of isozyme, RAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Scientia Horticulturae 87: 261–273.Google Scholar
  6. Cattan-Toupance, I., Y. Michalak is & C. Neema, 1998. Genetic structure of wild bean populations in their South-Andean centre of origin. Theor. Appl. Genet. 96: 844–851.Google Scholar
  7. Condit, I.J., 1932. The stucture and development of flowers in Ficus carica. Hilgardia 6: 443–481.Google Scholar
  8. Condit, I.J., 1941. Fig characteristics useful in the identification of varieties. Hilgardia 14: 1–69.Google Scholar
  9. Condit, I.J., 1955. Fig varieties: a monograph. Hilgardia 23: 322–538.Google Scholar
  10. Condit, I.J., 1956. Promising new seedling fig. Calif. Agr. 10: 4–14.Google Scholar
  11. Crouch, J.H., H.K. Crouch, H. Constandt, A.V. Gysel, P. Breyne, M.V. Montagu, R.L. Jarret & R. Ortiz, 1999. Comparison of PCR-based molecular marker analyses of Musa breeding populations. Molec. Breed. 5: 233–244.Google Scholar
  12. Dunemann, G., R. Kahnau & H. Schmidt, 1994. Genetic relationships in Malus evaluated by RAPD fingerprinting of cultivars and wild species. Plant Breed. 113: 150–159.Google Scholar
  13. Felsenstein, J., 1993. PHYLIP: Phylogeny Inference Package, version 3.75c. Department of Genetics, University of Washington, Seattle, USA.Google Scholar
  14. Ferguson, L., T.J. Michailides & H. Shorey, 1990. The California fig industry. Hort. Rev. 12: 409–490.Google Scholar
  15. Galderisi, U., M. Cipollaro, G.D. Bernardo, L. De Masi, G. Galano & A. Cascino, 1999. Identification of the edible fig ‘Bianco del Cilento’ by random amplified polymorphic DNA analysis. HortSciense 34(7): 1263–1265.Google Scholar
  16. Gardiner, S.E., H.C.M. Basset, D. Madie & D.A.M. Noiton, 1996. Isozyme, radomly amplified polymorphic DNA (RAPD) and restriction fragment lenth polymorphism (RFLP) markers use dto deduce a putative parent for the ‘Braeburn’ apple. J. Amer. Soc. Hort. Sci. 121: 996–1001.Google Scholar
  17. Gibert, J.E., R.V. Lewis, M.J. Wilkinson & P.D.S. Caligari, 1999. Developing an appropriate strategy to assess genetic variability in germplasm collections. Theor. Appl. Genet. 98: 1125–1131.Google Scholar
  18. Gutman, F., A. Nerd, Y. Mizrahi, D. Bar-Zvi & D. Raveh, 1999. Application of random amplified polymorphic DNA markers for identification of Marula genotypes. HortSciense 34(7): 1256–1258.Google Scholar
  19. Hallden, C., N.O. Nilsson, I.M. Rading & T. Sall, 1994. Evaluation of RFLP and RAPD markers in a comparison of Brassica napus breeding lines. Theor. Appl. Genet. 88: 123–128.Google Scholar
  20. Jaccard, P., 1908. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44: 223–270.Google Scholar
  21. Kazan, K., J.M. Manners & D.F. Cameron, 1993. Genetic variation in agronomically important species of Stylosanthes determined using random ampified polymorphic DNA markers. Theor. Appl. Genet. 85: 882–888.Google Scholar
  22. Khadari, B., P. Lashermes & F. Kjellberg, 1995. RAPD fingerprints for identification and genetic characterization of fig (Ficus carica L.) genotypes. J. Genet. Breed. 49: 77–86.Google Scholar
  23. Kjellberg, F., P.H. Gouyon, M. Ibrahim, M. Raymond & G. Valdeyron, 1987. The stability of the symbiosis between dioecious figs and their pollinators: a study of Ficus carica L. and Blastophaga psenes L. Evolution 41: 693–704.Google Scholar
  24. Koller, B., A. Lehmann, J.M. McDermott & C. Gesser, 1993. Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85: 901–904.Google Scholar
  25. Kresovich, S., J.G.K. Williams, J.R. McFerson, E.J. Routman & B.A. Schaal, 1992. Characterization of genetic identities and relationships of Brassica oleracea L.via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85: 190–196.Google Scholar
  26. Lakshmi, M., S. Rajalakshmi, M. Parami, C.S. Anuratha & A. Parida, 1997. Molecular phylogeny of mangroves. I. Use of molecular markers in assessing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius Linn. (Acanthaceae). Theor. Appl. Genet. 94: 1121–1127.Google Scholar
  27. Lefebvre, V., B. Goffinet, J.C. Chauvet, B. Caromel, P. Signoret, R. Brand & A. Palloix, 2001. Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD and phenotypic data. Theor. Appl. Genet. 102: 741–750.Google Scholar
  28. Lionakis, S.M., 1994. Present status and future prospects of the cultivation in Greece of the plants: fig, persimmon, pomegranate and barbary fig, pp. 14–21 in Proc. First Meeting of the CIHEAM Cooperative Research Network on Underutilized Fruit Trees, Zaragosa.Google Scholar
  29. McRoberts, N., R.P. Finch, W. Sinclair, A. Meikle, G. Marshall, G. Squire & J. McNicol, 1999. Accessing the ecological significance of molecular diversity data in natural plant populations. J. Exp. Bot. 50: 1635–1645.Google Scholar
  30. Metais, I., C. Aubry, B. Hamon, R. Jalouzot & D. Peltier, 2000. Description and analysis of genetic diversity between commercial bean lines (Phaseolus vulgaris L.). Theor. Appl. Genet. 101: 1207–1214.Google Scholar
  31. Nebauer, S.G., L.D. Castillo-Agudo & J. Segura, 1999. RAPD variation within and among natural populations of outcrossing willow-laeved foxglove (Digitalis obscura L.). Theor. Appl. Genet. 98: 985–994.Google Scholar
  32. Nelson, C.D., W.L. Nance & R.L. Doudrick, 1993. A partial genetic linkage map of slash pine (Pinus elliottii Engelm. var.elliottii based on random amplified polymorphic DNAs. Theor. Appl. Genet. 87: 145–151.Google Scholar
  33. Nicese, F.P., J.I. Hormaza & G.H. McGranahan, 1998. Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers. Euphytica 101: 199–206.Google Scholar
  34. Obenauf, G., M. Gerdts, G. Leavitt & J. Crane, 1978. Commercial dried fig production in California, pp. 1–31 in California, Agricultural Scienses. University of California, Leaflet 21051.Google Scholar
  35. Owuor, E.D., T. Fahima, A. Beharav, A. Korol & E. Nevo, 1999. RAPD divergence caused by microsite edaphic selection in wild barley. Genetica 105: 177–192.Google Scholar
  36. Palacios, C. & F. Gonzalez-Candelas, 1997. Analyis of population genetic structure and variability using RAPD markers in the endemic and endangered Limonium dufourii (Plumbaginaceae). Mol. Ecol. 6: 1107–1121.Google Scholar
  37. Papa, R., G. Attene, G. Barcaccia, A. Ohgata & T. Konishi, 1998. Genetic diversity in landrace polulations of Hordeum vulgare L. from Sardinia, Italy, as revealed by RAPDs, isozymes and morphophenological traits. Plant Breed. 117: 523–530.Google Scholar
  38. Rodriguez, J.M., T. Berke, L. Engle & J. Nienhuis, 1999. Variation among and within Capsicum species revealed by RAPD markers. Theor. Appl. Genet. 99: 147–156.Google Scholar
  39. Rogers, S.O. & A.J. Bendich, 1988. Extraction of DNA from plant tissues, pp. 1–11 in Plant Molecular Biology Manual, edited by S.B. Gevin, R.A. Schilperoort & D.P.S. Verma. Kluwer Academic Publishers, Dordrecht,.Google Scholar
  40. Sadhu, M.K., 1990. Fig, pp. 650–663 in Fruits: Tropical and Subtropical, edited by T.K. Kose & S.K. Mitra. Naya Prokash, Calcutta.Google Scholar
  41. Song, B.K., M.M. Clyde, R. Wickneswari & M.N. Normah, 2000. Genetic Relatedness among Lansium domesticum accessions using RAPD markers. Ann. Bot. 86: 299–307.Google Scholar
  42. Storey, W.B., 1975. Figs, pp. 568–589 in Advances in Fruit Breeding, edited by J. Janick & J.N. Moore. Purdue Univ. Press, W. Lafayette, Indiana.Google Scholar
  43. Tous, J. & L. Ferguson, 1996. Mediterranean fruits, pp. 416–430 in Progress in New Crops, edited by J. Janick. ASHS Press, Arlington, V.A.Google Scholar
  44. Valdeyron, G. & D.G. Lloyd, 1979. Sex differences and flowering phenology in the common fig, Ficus carica L. Evolution 33: 673–675.Google Scholar
  45. Wang, M. & I.L. Goldman, 1999. Genetic distance and diversity in table beet and sugar beet accessions measured by randomly amplified polymorphic DNA. J. Amer. Soc. Hort. Sci. 124: 630–635.Google Scholar
  46. Welsh, J. & M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18: 7213–7218.Google Scholar
  47. Wiesman, Z., N. Avidan, S. Lavee & B. Quebedeaux, 1998. Molecular characterization of common olive varieties in Israel and the West Bank using randomly amplified polymorphic DNA (RAPD) markers. J. Amer. Soc. Hort. Sci. 123: 837–841.Google Scholar
  48. Williams, J.G.K., A.R. Kubelik, K.I. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.Google Scholar
  49. Yang, X. & C. Quiros, 1993. Identification and classification of celery cultivars with RAPD markers. Theor. Appl. Genet. 86: 205–212.Google Scholar
  50. Zohary, D. & M. Hopf, 1988. Domestication of Plants in the Old World: the Origin and Cultivated Plants in West Asia, Europe and the Nile Valley. Oxford University Press, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Kalliopi Papadopoulou
    • 1
  • Constantinos Ehaliotis
    • 1
    • 2
  • Maria Tourna
    • 1
  • Petros Kastanis
    • 1
  • Ioannis Karydis
    • 1
  • Georgios Zervakis
    • 1
  1. 1.National Agricultural Research FoundationInstitute of KalamataKalamataGreece (Phone
  2. 2.Department of Reclamation of Natural Resources and Agricultural Engineering, Laboratory of Soils and Agricultural Chemistry, Iera Odos 75Agricultural University of AthensAthensGreece (Phone

Personalised recommendations