Journal of Statistical Physics

, Volume 107, Issue 5–6, pp 1283–1298 | Cite as

A Generalization of the Collatz Problem. Building Cycles and a Stochastic Approach

  • J. L. Rouet
  • M. R. Feix
Article

Abstract

The (3x+1)/2 problem is generalized into the n-furcation problem (lix+mi)/n where i∈[0, 1, ..., n−1]. It is shown that, under some constraints on li and mi, the main bijection property between the k less significant digits of the seed, written in base n, and the sequence of generalized parities of the k first iterates is preserved. This property is used to investigate a stochastic treatment of ensemble of large value seeds. The bijection property predicts stochasticity for a number of iterations equals to the number of significant digits of the seed. In fact, the stochastic approach is valid for much larger numbers, a property which is more easily shown by using increasing sequences than decreasing ones. Finally, we extend the stochastic approach to cases where the bijection theorem does not hold, introducing the matrix giving the probability that a “j” number (where j is the last significant digit of this number written in base n) gives a “i” number iterate.

3x+1 problem Collatz problem mixing process random walk numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. C. Lagarias, The 3x+1 problem and its generalizations, American Mathematical Monthly 92:3–23 (1985).Google Scholar
  2. 2.
    G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Application 24(11):79–99 (1992).Google Scholar
  3. 3.
    J. H. Conwey, Unpredictable Iterations, Proceedings of the number theory conference (University of Colorado, Boulder, 1972).Google Scholar
  4. 4.
    K. R. Matthews and A. M. Watts, A generalization of Hasse's generalization of the Syracuse algorithm, Acta Arithmetica XLIII:167–175 (1984).Google Scholar
  5. 5.
    K. R. Matthews and A. M. Watts, A Markov approach to the generalized Syracuse algorithm, Acta Arithmetica XLV:29–42 (1985).Google Scholar
  6. 6.
    R. N. Buthsworth and K. R. Matthews, On some Markov matrices arising from the generalized Collatz mapping, Acta Arithmetica LV:43–57 (1990).Google Scholar
  7. 7.
    M. R. Feix, A. Muriel, D. Merlini, and R. Tratini, The (3x+1)/2 problem: A statistical approach, in Stochastic Process, Physics and Geometry, Locarno, Switzerland, 24–26 June 1991, S. Albervio, U. Cattaneo, and D. Merlin, eds. (World Scientific, 1991), pp. 289–300.Google Scholar
  8. 8.
    M. R. Feix, A. Muriel, and J.-L. Rouet, Statistical properties of an iterated mapping, J. Statist. Phys. 76:725–741 (1994).Google Scholar
  9. 9.
    R. Terras, A stopping time problem on the positive integers, Acta Arithmetica 30:241–252 (1976).Google Scholar
  10. 10.
    J. C. Lagarias and A. Weiss, The 3x+1 problem: Two stochastic models, Annals of Applied Probability 2:229–261 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • J. L. Rouet
    • 1
  • M. R. Feix
    • 2
  1. 1.Laboratoire de Mathématique, Applications et Physique Mathématique—UMR 6628Université d'Orléans, UFR des SciencesOrléans Cedex 2France
  2. 2.Ecole des Mines de NantesSUBATECHNantes Cedex 3France

Personalised recommendations