Cellular and Molecular Neurobiology

, Volume 21, Issue 6, pp 753–769

Neuregulin Induces Sustained Reactive Oxygen Species Generation to Mediate Neuronal Differentiation

  • Yona Goldsmit
  • Shlomit Erlich
  • Ronit Pinkas-Kramarski
Article

Abstract

Neuregulins (NRGs), which are highly expressed in the nervous system, bind and activate two receptor tyrosine kinases, ErbB-3 and ErbB-4. Recently, we have shown that ErbB-4 receptors expressed in PC12 cells mediate NRG-induced differentiation through the MAPK signaling pathway. Here we demonstrate that NRG induces an increase in the intracellular concentration of reactive oxygen species (ROS). N-acetylcysteine, a ROS scavenger, inhibited NRG-induced activation of Ras and Erk and PC12-ErbB-4 cell differentiation. These results suggest that ROS production is involved in NRG-mediated neuronal differentiation and that ROS can regulate activation of Ras and Erk. Constitutively active Ras enhanced ROS production and dominant negative Ras inhibited NRG-induced ROS production, suggesting, a positive regulatory loop between Ras and ROS. The mitogen, EGF, induced short-term ROS production whereas NRG and NGF, which induce cell differentiation, induced prolonged ROS production. These results strongly suggest that the kinetics of ROS production may determine whether the cells will differentiate or proliferate.

epidermal growth factor (EGF) ErbB/HER family neu differentiation factor (NDF) neuregulin (NRG) signal transduction tyrosine kinase reactive oxygen species (ROS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abe, J., andBerk, B. C. (1999). Fyn and JAK2 mediate Ras activation by reactive oxygen species. J. Biol. Chem. 274: 21003-21010.Google Scholar
  2. Baas, A. S., andBerk, B. C. (1995). Differential activation of mitogen-activated protein kinases by H2O2 and O2-in vascular smooth muscle cells. Circ. Res. 77: 29-36.Google Scholar
  3. Bae, Y. S.,Kang, S.W.,Seo,M. S.,Baines, I. C.,Tekle, E.,Chock, P. B., andRhee, S. G. (1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272: 217-221.Google Scholar
  4. Brockes, J. P.,Lemke, G. E., andBalzer, D. R. J. (1980). Purification and preliminary characterization of a glial growth factor from the bovine pituitary. J. Biol. Chem. 255: 8374-8377.Google Scholar
  5. Canoll, P. D.,Musacchio, J. M.,Hardy, R.,Reynolds, R.,Marchionni, M. A., andSalzer, J. L. (1996). GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17: 229-243.Google Scholar
  6. Corfas, G.,Fall, D. L., andFischbach, G. D. (1993). Aria, a protein that stimulates acetylcholine receptor synthesis, also induces tyrosine phosphorylation of a 185-kDa muscle transmembrane protein. Proc. Natl. Acad. Sci. USA 90: 1624-1628.Google Scholar
  7. Corfas, G., andFischbach, G.D. (1993). The number of Na+ channels in cultured chick muscle is increased by ARIA, an acetylcholine receptor-inducing activity. J. Neurosci. 73: 2118-2125.Google Scholar
  8. Cowley, S.,Paterson, H.,Kemp, P., andMarshall, C. J. (1994). Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841-852.Google Scholar
  9. Devary, Y.,Gottlieb, R. A.,Smeal, T., andKarin, M. (1992). The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 71: 1081-1091.Google Scholar
  10. Dong, Z.,Brennan, A.,Liu, N.,Yarden, Y.,Lefkowitz, G.,Mirsky, R., andJessen, K. R. (1995). Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15: 585-596.Google Scholar
  11. Dreher, D., andJunod, A. F. (1996). Role of oxygen free radicals in cancer development. Eur. J. Cancer 32A: 30-38.Google Scholar
  12. Foschi, M.,Chari, S., andDunn, M. J. (1997). Biphasic activation of p21ras by endothelin-1 sequentially activates the ERK cascade and phosphatidylinositol 3-kinase. EMBO J. 16: 6439-6451.Google Scholar
  13. Graus-Porta, D.,Beerli, R. R., andHynes, N. E. (1995). Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol. Cell. Biol. 15: 1182-1191.Google Scholar
  14. Guyton, K. Z.,Liu, Y.,Gorospe, M.,Xu, Q., andHolbrook, N. J. (1996). Activation of mitogenactivated protein kinase by H2O2. Role in cell survival following oxidant injury. J. Biol. Chem. 271: 4138-4142.Google Scholar
  15. Heldin, C.-H. (1995). Dimerization of cell surface receptors in signal transduction. Cell 80: 213-223.Google Scholar
  16. Irani, K. (2000). Oxidant signaling in vascular cell growth, death, and survival: A review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ. Res. 87: 179-183.Google Scholar
  17. Kamata, H., andHirata, H. (1999). Redox regulation of cellular signalling. Cell Signal. 11: 1-14.Google Scholar
  18. Kamata, H.,Tanaka, C.,Yagisawa, H.,Matsuda, S.,Gotoh, Y.,Nishida, E., andHirata, H. (1996). Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J. Biol. Chem. 27: 33018-33025.Google Scholar
  19. Karunagaran, D.,Tzahar, E.,Beerli, R. R.,Grausporta, D.,Wen, D.,Seger, R.,Hynes, N. E., andYarden, Y. (1996). ErbB-2 is a common auxiliary subunit of NDF-and EGF-receptors: Implications for breast cancer. EMBO J. 15: 254-264.Google Scholar
  20. Knight, J. A. (1997). Reactive oxygen species and the neurodegenerative disorders. Ann. Clin. Lab. Sci. 27: 11-25.Google Scholar
  21. Lander, H. M.,Tauras, J. M.,Ogiste, J. S.,Hori, O.,Moss, R. A., andSchmidt, A. M. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272: 17810-17814.Google Scholar
  22. Lotem, J.,Peled-Kamar, M.,Groner, Y., andSachs, L. (1996). Cellular oxidative stress and the control of apoptosis by wild-type p53, cytotoxic compounds, and cytokines. Proc. Natl. Acad. Sci. U.S.A. 93: 9166-9171.Google Scholar
  23. Marchionni, M. A.,Goodearl, A. D. J.,Chen, M. S.,Bermingham-McDonogh, O.,Kirk, C.,Hendricks, M.,Denehy, F.,Misumi, D.,Sudhalter, J.,Kobayashi, K.,Wroblewski, D.,Lynch, C.,Baldassare, M.,Hiles, I.,Davis, J. B.,Hsuan, J. J.,Totty, N. F.,Otsu, M.,McBury, R.N.,Waterfield, M.D.,Stroobant, P., andGwynne, D. (1993). Glial growth factors are alternatively spliced erbB-2 ligands expressed in the nervous system. Nature 362: 312-318.Google Scholar
  24. Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179-185.Google Scholar
  25. Mills, E. M.,Takeda, K.,Yu, Z. X.,Ferrans, V.,Katagiri, Y.,Jiang, H.,Lavigne, M. C.,Leto, T. L., andGuroff, G. (1998). Nerve growth factor treatment prevents the increase in superoxide produced by epidermal growth factor in PC12 cells. J. Biol. Chem. 273: 22165-22168.Google Scholar
  26. Ohba, M.,Shibanuma, M.,Kuroki, T., and K.,N. (1994). Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell. Biol. 126: 1079-1088.Google Scholar
  27. Peles, E., andYarden, Y. (1993). Neu and its ligands: From an oncogene to neural factors. BioEssays 15: 815-824.Google Scholar
  28. Peunova, N., andEnikolopov, G. (1995). Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature 375: 68-73.Google Scholar
  29. Pinkas-Kramarski, R.,Alroy, I., andYarden, Y. (1997a). ErbB receptors and EGF-like ligands: Cell lineage determination and oncogenesis through combinatorial signaling. J. Mamm. Gland Biol. Neoplasia 2: 97-107.Google Scholar
  30. Pinkas-Kramarski, R.,Eilam, R.,Alroy, I.,Levkowitz, G.,Lonai, P., andYarden, Y. (1997b). Differential expression of NDF/neuregulin receptors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal differentiation. Oncogene 15: 2803-2815.Google Scholar
  31. Pinkas-Kramarski, R.,Eilam, R.,Spiegler, O.,Lavi, S.,Liu, N.,Chang, D.,Wen, D.,Schwartz, M., andYarden, Y. (1994). Brain neurons and glial cells express NDF/heregulin-a survival factor for astrocytes. Proc. Natl. Acad. Sci. U.S.A. 91: 9387-9391.Google Scholar
  32. Pinkas-Kramarski, R.,Soussan, L.,Waterman, H.,Levkowitz, G.,Alroy, I.,Klapper, L.,Lavi, S.,Seger, R.,Ratzkin, J. B.,Sela, M., andYarden, Y. (1996). Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 15: 2452-2467.Google Scholar
  33. Raff, M.,Abney, E.,Brockes, J. P., andHornby-Smith, A. (1978). Schwann cell growth factors. Cell 13: 813-822.Google Scholar
  34. Rieff, H. I.,Raetzman, L. T.,Sapp, D. W.,Yeh, H. H.,Siegel, R. E., andCorfas, G. (1999). Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J. Neurosci. 19: 10757-10766.Google Scholar
  35. Riese, D. J. N.,van Raaij, T. M.,Plowman, G. D.,Andrews, G. C., andStern, D. F. (1995). The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol. Cell. Biol. 15: 5770-5776.Google Scholar
  36. Rio, C.,Rieff, H. I.,Qi, P., andCorfas, G. (1997). Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19: 39-50.Google Scholar
  37. Segal, R. A., andGreenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19: 463-489.Google Scholar
  38. Shah, N. M.,Marchionni, M. A.,Isaacs, I.,Stroobant, P., andAnderson, D. (1994). Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77: 349-360.Google Scholar
  39. Stern, D. F., andKamps, M. P. (1988). EGF-stimulated tyrosine phosphorylation of p185neu: A potential model for receptor interactions. EMBO J. 7: 995-1001.Google Scholar
  40. Sundaresan, M.,Yu, Z. X.,Ferrans, V. J.,Irani, K., andFinkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296-299.Google Scholar
  41. Suzukawa, K.,Miura, K.,Mitsushita, J.,Resau, J.,Hirose, K.,Crystal, R., andKamata, T. (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J. Biol. Chem. 275: 13175-13178.Google Scholar
  42. Toyoda, H.,Komursaki, T.,Uchida, D.,Takayama, Y.,Isobe, T.,Okuyama, T., andHanada, K. (1995). Epiregulin, a novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J. Biol. Chem. 270: 7495-7500.Google Scholar
  43. Tzahar, E.,Lefkowitz, G.,Karunagaran, D.,Yi, L.,Peles, E.,Lavi, S.,Chang, D.,Liu, N.,Yayon, A.,Wen, D., andYarden, Y. (1994). ErbB-3 and ErbB-4 function as the respective low and high affinity receptors of all NDF/Heregulin isoforms. J. Biol. Chem. 269: 25226-25233.Google Scholar
  44. Tzahar, E.,Waterman, H.,Chen, X.,Levkowitz, G.,Karunagaran, D.,Levi, S.,Ratzkin, B. J., andYarden, Y. (1996). A hierarchial network of inter-receptor interactions determined signal transduction by NDF and EGF. Mol. Cell. Biol. 16: 5276-5287.Google Scholar
  45. Ullrich, A., andSchlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203-212.Google Scholar
  46. Vartanian, T.,Corfas, G.,Li, Y., andFischbach, G.D. (1995). Arole for the achetylcholine receptor-inducing protein ARIA in oligodendrocyte development. Proc. Natl. Acad. Sci. U.S.A. 91: 11626-11630.Google Scholar
  47. Vaskovsky, A.,Lupowitz, Z.,Erlich, S., andPinkas-Kramarski, R. (2000). ErbB-4 activation promotes neurite outgrowth in PC12 Cells. J. Neurochem. 74: 979-987.Google Scholar
  48. Wang, H., andJoseph, J. A. (1999). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27: 612-616.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Yona Goldsmit
    • 1
  • Shlomit Erlich
    • 1
  • Ronit Pinkas-Kramarski
    • 1
  1. 1.Department of NeurobiochemistryTel Aviv UniversityRamat AvivIsrael

Personalised recommendations