European Minor Constituent Radiometer: A New Millimeter Wave Receiver for Atmospheric Research

  • D. Maier
  • N. Kämpfer
  • J. de la Noë
  • W. Amacher
  • A. Barcia
  • P. Baron
  • B. Barry
  • G. Beaudin
  • J. Cernicharo
  • B. Ellison
  • J.-D. Gallego
  • M. Gustafsson
  • A. Karpov
  • U. Klein
  • K. Künzi
  • J. Louhi
  • J. Mallat
  • D. Matheson
  • J.-R. Pardo
  • R. Peter
  • A.V. Räisänen
  • P. Ricaud
  • R. Siddans
  • C. Viguerie
  • M. Wüthrich
Article

Abstract

EMCOR is a heterodyne receiver for the frequency range of 201 to 210 GHz. It has been designed for ground-based measurements of various minor constituents of the stratosphere involved in ozone chemistry. Since the aim was the detection of faint spectral lines, a superconducting tunnel junction has been chosen as mixer element and special care has been taken in developing the calibration unit of the system. The front-end is completed by a quasi-optical system, a solid state local oscillator with electronic tuning and a HEMT pre-amplifier. In the back-end an acousto-optical spectrometer is employed to analyse the signal. A PC controls the whole system. The instrument has been installed at a high mountain site in the Swiss Alps.

Millimeter wave receiver calibration stratospheric trace gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. de la Noë, P. Ricaud, P. Baron, G. Beaudin, C. Viguerie, J.-R. Pardo, J. Cernicharo, A. Barcia, J.-D. Gallego, N. Kämpfer, D. Maier, R. Peter, D. Matheson, B. Ellison, R. Siddans, K. Künzi, U. Klein, B. Franke, J. Louhi, M. Gustafsson, J. Mallat, and A. Räisänen, “A European microwave radiometer to measure some stratospheric minor constituents: the emcor instrument,” in Proceedings of the 2nd ESA Workshop on Millimetre Wave Technology and Applications: Antennas, Circuits and Systems, Millilab, Espoo, Finland, May 1998.Google Scholar
  2. [2]
    J. de la Noë, P. Ricaud, P. Baron, O. Lezeaux, C. Viguerie, J.-R. Pardo, G. Beaudin, J. Cernicharo, A. Barcia, J.-D. Gallego, D. Maier, R. Peter, N. Kämpfer, W. Amacher, A. Widmer, M. Wüthrich, B. Ellison, D. Matheson, R. Siddans, B. Kerridge, U. Klein, B. Barry, K. Künzi, J. Louhi, M. Gustafsson, J. Mallat, and A. Räisänen”, “Development of a European ground-based microwave radiometer to measure stratospheric minor constituents,” Final Report to the EC, contract ENV4-CT95-0137, 1999.Google Scholar
  3. [3]
    J.J. Gustincic, “A quasi-optical receiver design,” in IEEE-MTT-S, International Microwave Symposium Digest, San Diego, May 1977, pp. 99-100.Google Scholar
  4. [4]
    P.F. Goldsmith, “Quasi-optical techniques at millimeter and submillimeter wavelengths,” in Infrared and Millimeter Waves vol. 6: Systems and Components, K.J. Button, Ed., New York, 1982, Academic Press.Google Scholar
  5. [5]
    J. Louhi, M. Gustafsson, J. Mallat, and A. Räisänen, “Local oscillator and IF chain for European millimeter wave radiometer, EMCOR,” Report S229, Helsinki University of Technology, Radio Laboratory, October 1997.Google Scholar
  6. [6]
    J.D. Gallego, R. Baeza, R. Garcia, and D. Geijo, “Measurements of EMCOR cryogenic 3.9–4.9 GHz HEMT amplifier,” Technical report CAY 1997-1, Centro Astronómico de Yebes, May 1997.Google Scholar
  7. [7]
    A. Parrish, R.L. de Zafra, P.M. Solomon, and J.W. Barrett, “A ground-based technique for millimeter wave spectroscopic observations of trace constituents,” Radio Science, vol. 23, pp. 106-118, 1988.Google Scholar
  8. [8]
    R. Krupa, Millimeterwellen-Radiometrie stratosphärischer Spurengase unter Anwendung balancierter Kalibrierung, Ph.D. thesis, University of Karlsruhe, 1997.Google Scholar
  9. [9]
    T. Ingold, R. Peter, and N. Kämpfer, “Weighted mean tropospheric temperature and transmittance determination at millimeter-wave frequencies for ground-based applications,” Radio Science, vol. 33, pp. 905-918, 1998.Google Scholar
  10. [10]
    C.D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys., vol. 14, pp. 609-624, 1976.Google Scholar
  11. [11]
    M. Kuntz, “Retrieval of of ozone mixing ratio profiles from ground-based millimeter wave measurements disturbed by standing waves,” J. Geophys. Res., vol. 102,no. D18, pp. 21,965-21,975, 1997.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • D. Maier
    • 1
  • N. Kämpfer
    • 1
  • J. de la Noë
    • 2
  • W. Amacher
    • 1
  • A. Barcia
    • 3
  • P. Baron
    • 2
  • B. Barry
    • 4
  • G. Beaudin
    • 5
  • J. Cernicharo
    • 3
  • B. Ellison
    • 6
  • J.-D. Gallego
    • 3
  • M. Gustafsson
    • 7
  • A. Karpov
    • 8
  • U. Klein
    • 4
  • K. Künzi
    • 4
  • J. Louhi
    • 7
  • J. Mallat
    • 7
  • D. Matheson
    • 6
  • J.-R. Pardo
    • 5
  • R. Peter
    • 1
  • A.V. Räisänen
    • 7
  • P. Ricaud
    • 2
  • R. Siddans
    • 6
  • C. Viguerie
    • 5
  • M. Wüthrich
    • 1
  1. 1.Institute of Applied PhysicsUniversity of BerneBerneSwitzerland
  2. 2.Observatoire de BordeauxFloiracFrance
  3. 3.Centro Astronómico de YebesGuadalajaraSpain
  4. 4.Institute of Environmental Physics and Remote SensingUniversity of BremenBremenGermany
  5. 5.Observatoire de ParisParisFrance
  6. 6.Rutherford Appleton LaboratoryChiltonUK
  7. 7.Helsinki University of TechnologyHelsinkiFinland
  8. 8.Institut de Radio Astronomie MillimétriqueSaint Martin d'HèresFrance

Personalised recommendations