Mathematical Geology

, Volume 34, Issue 4, pp 435–456

Three-Dimensional Modeling of Mass Transfer in Porous Media Using the Mixed Hybrid Finite Elements and the Random-Walk Methods

  • H. Hoteit
  • R. Mose
  • A. Younes
  • F. Lehmann
  • Ph. Ackerer
Article

Abstract

A three-dimensional (3D) mass transport numerical model is presented. The code is based on a particle tracking technique: the random-walk method, which is based on the analogy between the advection–dispersion equation and the Fokker–Planck equation. The velocity field is calculated by the mixed hybrid finite element formulation of the flow equation. A new efficient method is developed to handle the dissimilarity between Fokker–Planck equation and advection–dispersion equation to avoid accumulation of particles in low dispersive regions. A comparison made on a layered aquifer example between this method and other algorithms commonly used, shows the efficiency of the new method. The code is validated by a simulation of a 3D tracer transport experiment performed on a laboratory model. It represents a heterogeneous aquifer of about 6-m length, 1-m width, and 1-m depth. The porous medium is made of three different sorts of sand. Sodium chloride is used as a tracer. Comparisons between simulated and measured values, with and without the presented method, also proves the accuracy of the new algorithm.

mass transport modeling advection–dispersion equation random-walk method laboratory model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ackerer, Ph., 1985, Propagation d'un Fluide en Aquifère Poreux Saturé en Eau. Prise en Compte et Localisation des Hétérogénéités par des Outils Théoriques et Expérimentaux: Doctoral dissertation, Université Louis Pasteur de Strasbourg, France, 102 p.Google Scholar
  2. Bear, J., 1979, Hydraulics of groundwater: McGraw-Hill, New York, 569 p.Google Scholar
  3. Brezzi, F., and Fortin, M., 1991, Mixed and hybrid finite element methods: Springer, New York, 350 p.Google Scholar
  4. Chavent, G., and Roberts, J. E., 1991, A unified physical presentation of mixed, mixed hybrid finite elements and standard finite difference approximations for the determination of velocities in water flow problems: Adv. Water Resour., v. 14, no. 6, p. 349–355.CrossRefGoogle Scholar
  5. Cordes, C., Daniels, H., and Rouve, G., 1991, A new very efficient algorithm for particle tracking in layered aquifers, in Bensari, D., Brebbia, C. A., and Ouazar, D. eds., 2nd international conference on computer methods and water resources, Rabat, Morocco, Computational Mechanics Publications, WIT Press, p. 41–55.Google Scholar
  6. Gardiner, C.W., 1985, Handbook of stochastic methods for physics, chemistry and the natural sciences, 2nd edn.: Springer, Berlin, 434 p.Google Scholar
  7. Itô, K., 1951, On stochastical differential equations, Vol. 4: American Mathematical Society, New York, p. 289–302.Google Scholar
  8. Kinzelbach, W., 1986, Groundwater modeling: Introduction with sample programs in Basic: Developments in Water Science, 25th edn.: Elsevier, Amsterdam, 333 p.Google Scholar
  9. Labolle, E. M., Fogg, G. E., and Tompson, A. F. B., 1996, Random-walk simulation of transport in heterogeneous porous media: Local mass conservation problem and implementation methods: Water Resour. Res., v. 32, no. 3, p. 583–593.CrossRefGoogle Scholar
  10. Labolle, E. M., Quastel, J., and Fogg, G. E., 1998, Diffusion theory for transport in porous media: Transition probability densities of diffusion processes corresponding to advection-dispersion equations: Water Resour. Res., v. 34, no. 7, p. 1685–1693.CrossRefGoogle Scholar
  11. Mosé, R., Siegel, P., Ackerer, Ph., and Chavent, G., 1994, Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?: Water Resour. Res., v. 30, no. 11, p. 3001–3012.CrossRefGoogle Scholar
  12. Pinder, G. F., and Gray, W. G., 1977, Finite element simulation in surface and subsurface hydrology: Academic Press, New York, 295 p.Google Scholar
  13. Raviart, P. A., and Thomas, J. M., 1977, A mixed hybrid finite element method for the second order elliptic problems, in mathematical aspects of the finite element method, lecture notes in mathematics: Springer, New York.Google Scholar
  14. Ruch, M., Ackerer, Ph., and Guterl, P., 1992, A computer driven setup for mass transfer in porous media: in proceedings of Hydrocomp'92 international conference on interaction of computational methods and measurements in hydraulics and hydrology, Budapest, p. 419–426.Google Scholar
  15. Semra, K., 1994, Modelisation tridimensionnelle du transport d'un traceur en milieu poreux saturè hétérogène: Evaluation des théories stochastiques: Doctoral dissertation, Universitè Louis Pasteur de Strasbourg, France, 125 p.Google Scholar
  16. Uffink, G. J. M., 1985, A random-walk method for the simulation of macrodispersion in a strati-fied aquifer: in proceedings of IAHS symposia, IUGG 18th general assembly, Hamburg, IAHS Publication, v. 65, p. 26–34.Google Scholar
  17. Uffink, G. J. M., 1990, Analysis of dispersion by the random walk method: Doctoral dissertation, Delft University, The Netherlands, 150 p.Google Scholar

Copyright information

© International Association for Mathematical Geology 2002

Authors and Affiliations

  • H. Hoteit
    • 1
  • R. Mose
  • A. Younes
    • 2
  • F. Lehmann
  • Ph. Ackerer
  1. 1.Institut de Mécanique des Fluides et des SolidesUniversité Louis Pasteur de StrasbourgStrasbourgFrance
  2. 2.Département Physique et MécaniqueFaculté des Sciences et TechniquesSt Denis Cedex 09France

Personalised recommendations