Journal of Neurocytology

, Volume 30, Issue 5, pp 427–441 | Cite as

Glutamatergic components of the retrosplenial granular cortex in the rat

  • B. Wang
  • A. Gonzalo-Ruiz
  • J.M. Sanz
  • G. Campbell
  • A.R. Lieberman


The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, C., Venkatesan, C., Go, C. G., Mong, J. A. & Dawson, T. M. (1994) Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. Journal of Neuroscience 14, 5202–5222.Google Scholar
  2. Berger, T. W., Milner, T. A., Swanson, G. W., Lynch, G. S. & Thompson, R. F. (1980) Reciprocal anatomical connections between anterior thalamus and cingulate-retrosplenial cortex in the rabbit. Brain Research 201, 411–417.Google Scholar
  3. Donovan, M. K. & Wyss, J. M. (1983) Evidence for some collateralization between cortical and diencephalic efferent axons of the rat subicular cortex. Brain Research 259, 181–192.Google Scholar
  4. Fagg, G. E. & Foster, A. C. (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9, 701–719.Google Scholar
  5. Finch, D. M., Derian, E. & Babb, T. (1984) Excitatory projection of the rat subicular complex to the cingulate cortex and synaptic integration with thalamic afferents. Brain Research 301, 25–37.Google Scholar
  6. Fonnum, F. (1984) Glutamate: A neurotransmitter in mammalian brain. Journal of Neurochemistry 42, 1–11.Google Scholar
  7. Gonzalo-Ruiz, A., Sanz, J. M., Morte, L. & Lieberman, A. R. (1997) Glutamate and aspartate immunoreactivity in the reciprocal projections between the anterior thalamic nuclei and the retrosplenial granular cortex in the rat. Brain Research Bulletin 42, 309–321.Google Scholar
  8. Gonzalo-Ruiz, A., Wang, B., Sanz, J. M., Campbell, G. & Lieberman, A. R. (1998) Glutamate inputs from the anterior thalamic nuclei to identified corticothalamic projection neurons in the retrosplenial cortex of the rat. Society for Neuroscience Abstracts 24, 1163.Google Scholar
  9. Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207, 532–535.Google Scholar
  10. Hersch, S. M. & White, E. L. (1981) Thalamocortical synapses with corticothalamic projection neurones in mouse Sml cortex: Electron microscopic demonstration of a monosynaptic feedback loop. Neuroscience Letters 24, 207–210.Google Scholar
  11. Hicks, T. P., Kaneko, T., Metherate, R., Oka, J. I. & Stark, X. (1991) Amino acids as transmitters of synaptic excitation in neocortical sensory processes. Canadian Journal of Physiology and Pharmacology 69, 1099–1114.Google Scholar
  12. Hill, E., Kalloniatis, M. & Tan, S. S. (2000) Glutamate, GABA and precursor amino acids in adult mouse neocortex: Cellular diversity revealed by quantitative immunocytochemistry. Cerebral Cortex 10, 1132–1142.Google Scholar
  13. Horikawa, K., Kinjo, N., Stanley, L. C. & Powell, E. W. (1988) Topographic organization and collateralization of the projections of the anterior and laterodorsal thalamic nuclei to cingulate area 24 and 29 in the rat. Neuroscience Research 6, 31–44.Google Scholar
  14. Johnson, R. R. & Burkhalter, A. (1992) Evidence for excitatory amino acid neurotransmitters in the geniculocortical pathway and local projections within rat primary visual cortex. Experimental Brain Research 89, 20–30.Google Scholar
  15. Kaitz, S. S. & Robertson, R. T. (1981) Thalamic connections with the limbic cortex. II. Corticothalamic connections. Journal of Comparative Neurology 158, 319–337.Google Scholar
  16. Kharazia, V. K. & Weinberg, R. J. (1993) Glutamate in terminals of thalamocortical fibers in rat somatic sensory cortex. Neuroscience Letters 157, 162–166.Google Scholar
  17. Kharazia, V. K. & Weinberg, R. J. (1994) Glutamate in thalamic fibers terminating in layer I of primary sensory cortex. Journal of Neuroscience 14, 6021–6032.Google Scholar
  18. Kuroda, M., Yokofujita, J. & Murakami, K. (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Progress in Neurobiology 54, 417–458.Google Scholar
  19. Llewellyn-Smith, I. J., Phend, K. D., Minson, J. B., Pilowsky, P. M. & Chalmers, J. P. (1992) Glutamate-immunoreactive synapses on retrogradely labelled sympathetic preganglionic neurones in rat thoracic spinal cord. Brain Research 581, 67–80.Google Scholar
  20. Macchi, G. (1969) Introductory statement about thalamocortical connections. Archives Italiennes de Biologie 107, 547–569.Google Scholar
  21. Maxwell, D. J., Christie, W. M., Ottersen, O. P. & Storm-Mathisen, J. (1990) Terminals of group Ia primary afferent fibers in Clarke's column are enriched with L-glutamate-like immunoreactivity. Brain Research 510, 346–350.Google Scholar
  22. Meinecke, D. L. & Peters, A. (1987) GABA immunoreactive neurones in rat visual cortex. Journal of Comparative Neurology 261, 388–404.Google Scholar
  23. Mesulam, M. M. (1982) Tracing neural connections with horseradish peroxidase. In IBRO Handbook (edited by Mesulam, M. M.). Chichester: Wiley.Google Scholar
  24. Oda, S. (1997) Ultrastructure and distribution of corticothalamic fiber terminals from the posterior cingulate cortex and the presubiculum to the anteroventral thalamic nucleus of the rat. Brain Research Bulletin 42, 485–491.Google Scholar
  25. Ottersen, O. P. (1989) Quantitative electron microscopic immunocytochemistry of neuroactive amino acid. Anatomy and Embryology 180, 1–15.Google Scholar
  26. Ottersen, O. P. & Storm-Mathisen, J. (1986) Excitatory amino acid pathways in the brain. Advances in Experimental Medical Biology 203, 263–284.Google Scholar
  27. Ottersen, O. P., Fischer, B. & Storm-Mathisen, J. (1983) Retrograde transport of [H]3-aspartate in thalamocortical neurones. Neuroscience Letters 42, 19–24.Google Scholar
  28. Ottersen, O. P., Storm-Mathisen, J., Braham, J., Torp, R., Laake, J. & Gundersen, V. (1990) A quantitative electron microscopic immunocytochemical study of the distribution and synaptic handling of glutamate in rat hippocampus. Progress in Brain Research 83, 99–114.Google Scholar
  29. Paxinos, G. & Watson, C. (1986) The Rat Brain in Stereotaxic Coordinates. Sydney: Academic Press.Google Scholar
  30. Peters, A. & Saldanha, J. (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. III. Layer VI. Brain Research 105, 533–537.Google Scholar
  31. Petralia, R. S. & Wenthold, R. J. (1992) Light and electron immunocytochemical localization of AMPAselective glutamate receptors in the rat brain. Journal of Comparative Neurology 318, 329–325.Google Scholar
  32. Phend, K. D., Weinberg, R. J. & Rustioni, A. (1992) Techniques to optimize post-embedding single and double staining for amino acid neurotransmitters. Journal of Histochemistry and Cytochemistry 40, 1011–1020.Google Scholar
  33. Pirot, S., Therese, M. J., Glowinski, J. & Thierry, A. M. (1994) Anatomical and electrophysiologial evidence for an excitatory amino acid pathway from the thalamic mediodorsal nucleus to the prefrontal cortex in the rat. European Journal of Neuroscience 6, 1225–1234.Google Scholar
  34. Rinvik, E. & Ottersen, O. P. (1993) Terminals of subthalamonigral fibers are enriched with glutamate-like immunoreactivity: An electron microscopic immunogold analysis in the cat. Journal of Chemical Neuroanatomy 6, 19–30.Google Scholar
  35. Robertson, R. T. & Kaitz, S. S. (1981) Thalamic connections with limbic cortex. I. Thalamocortical projections. Journal of Comparative Neurology 195, 501–525.Google Scholar
  36. Royce, G. J. (1983) Cells of origin of corticothalamic projections upon the centromedian and parafascicular nuclei in the cat. Brain Research 258, 11–21.Google Scholar
  37. Rustioni, A., Battaglia, G., de Biasi, S. & Giuffrida, R. (1988) Neuromediators in somatosensory thalamus: An immunocytochemical overview. In Cellular Thalamic Mechanisms (edited by Bentivoglio M. & Spreafico, R.) pp. 311–320. Amsterdam: Elsevier.Google Scholar
  38. Seki, M. & Zyo, K. (1984) Anterior thalamic afferents from the mammillary body and the limbic cortex in the rat. Journal of Comparative Neurology 229, 242–256.Google Scholar
  39. Shibata, H. (1993) Efferent projection from the anterior thalamic nuclei to the cingulate cortex in the rat. Journal of Comparative Neurology 330, 533–542.Google Scholar
  40. Shibata, H. (1998) Organization of projections of rat retrosplenial cortex to the anterior thalamic nuclei. European Journal of Neuroscience 10, 3210–3219.Google Scholar
  41. Sikes, R. W. & Vogt, B. A. (1987) Afferent connections of anterior thalamus in rats: Sources and association with muscarinic acetylcholine receptors. Journal of Comparative Neurology 256, 538–551.Google Scholar
  42. Somogyi, P., Halasy, K., Somogyi, J., Stormmathisen, J. & Ottersen, O. P. (1986) Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fiber terminals in cat cerebellum. Neuroscience 19, 1045–1051.Google Scholar
  43. Sripanidkulchai, K. & Wyss, J. M. (1986) Thalamic projections to retrosplenial cortex in the rat. Journal of Comparative Neurology 254, 143–165.Google Scholar
  44. Storm-Mathisen, J. & Ottersen, O. P. (1990) Immunocytochemistry of glutamate at the synaptic level. Journal of Histochemistry and Cytochemistry 38, 1733–1743.Google Scholar
  45. Tsumoto, T. (1990) Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral cortex. Neuroscience Research 9, 79–102.Google Scholar
  46. Valtschanoff, J. G., Phend, K. D., Bernardi, P. S., Weinberg, R. J. & Rustioni, A. (1994) Amino acid immunocytochemistry of primary afferent terminals in the rat dorsal horn. Journal of Comparative Neurology 346, 237–252.Google Scholar
  47. van Groen, T. & Wyss, J. M. (1990a) Connection of the retrosplenial granular cortex in the rat. Journal of Comparative Neurology 300, 593–606.Google Scholar
  48. van Groen, T. & Wyss, J. M. (1990b) The postsubicular cortex in the rat: Characterization of the fourth region of the subicular cortex and its connections. Brain Research 529, 165–177.Google Scholar
  49. van Groen, T. & Wyss, J. M. (1992) Connections of the retrosplenial dysgranular cortex in the rat. Journal of Comparative Neurology 315, 200–216.Google Scholar
  50. van Groen, T. & Wyss, J. M. (1995) Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat. Journal of Comparative Neurology 358, 584–604.Google Scholar
  51. van Groen, T., Brent, A. & Wyss, J. M. (1993) Interconnections between the thalamus and retrosplenial cortex in the rodent brain. In Neurobiology of Cingulate Cortex and Limbic Thalamus (edited by Vogt, B. A. & Gabriel, M.) pp. 121–150. Boston: Birkhauser.Google Scholar
  52. Vogt, B. A. (1991) The role of layer I in cortical function. In Cerebral Cortex (edited by Peters, A. & Jones, E. G.) Vol. 9, pp. 49–80. New York: Plenum Press.Google Scholar
  53. Vogt, B. A. (1993) Structural organization of cingulate cortex: Areas, neurons, and somatodendritic transmitter receptors. In Neurobiology of Cingulate Cortex and Limbic Thalamus (edited by Vogt, B. A. & Gabriel, M.). Boston: Birkhäuser.Google Scholar
  54. Vogt, B. A. & Peters, A. (1981) Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. Journal of Comparative Neurology 195, 603–625.Google Scholar
  55. Vogt, B. A., Rosene, D. L. & Peters, A. (1981) Synaptic terminals of thalamic and callosal afferents in cingulate cortex of the rat. Journal of Comparative Neurology 201, 265–283.Google Scholar
  56. Wang, B., Gonzalo-Ruiz, A., Sanz, J. M., Campbell, G. & Lieberman, A. R. (1999a) Immunoelectron microscopic study of γ-aminobutyric acid inputs to identified thalamocortical projection neurons in the anterior thalamus of the rat. Experimental Brain Research 126, 369–382.Google Scholar
  57. Wang, B., Gonzalo-Ruiz, A., Morte, L., Campbell, G. & Lieberman, A. R. (1999b) Immunoelectron microscopic study of glutamate inputs from the retrosplenial granular cortex to identified thalamocortical projection neurons in the anterior thalamus of the rat. Brain Research Bulletin 50, 63–76.Google Scholar
  58. Warr, W. B., de Olmos, J. S. & Heimer, L. (1981) Horseradish peroxidase. The basic procedure. In Neurochemical Tract-Tracing Methods (edited by Heimer, L. & Robards, M. J.) pp. 207–261. NewYork: Plenum Press.Google Scholar
  59. Watkins, J. C. & Evans, R. H. (1981) Excitatory amino acid neurotransmitters. Annual Review of Pharmacology and Toxicology 21, 165–204.Google Scholar
  60. Weinberg, R. J. & van Eyck, S. L. C. (1991) A tetramethyl benzidine/tungstate reaction for horseradish peroxidase histochemistry. Journal of Histochemistry and Cytochemistry 39, 1143–1148.Google Scholar
  61. Zhang, H., Walberg, F., Laake, J. H., Meldrum, B. S. & Ottersen, O. P. (1990) Aspartate-like and glutamate-like immuno reactivities in the inferior olive and climbing fiber system: Alight microscopic and semiquantitative electron microscopic study in rat and baboon (Papio anubis). Neuroscience 38, 61–80.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • B. Wang
    • 1
  • A. Gonzalo-Ruiz
    • 2
  • J.M. Sanz
    • 2
  • G. Campbell
    • 1
  • A.R. Lieberman
    • 1
  1. 1.Department of Anatomy and Developmental BiologyUniversity College LondonLondonUK
  2. 2.Laboratory of Neuroanatomy, Institute of NeuroscienceUniversity of ValladolidSpain

Personalised recommendations