Journal of Automated Reasoning

, Volume 28, Issue 2, pp 205–232 | Cite as

Using Resolution for Testing Modal Satisfiability and Building Models

  • Ullrich Hustadt
  • Renate A. Schmidt

Abstract

This paper presents a translation-based resolution decision procedure for the multimodal logic K(m)(∩,∪,⌣) defined over families of relations closed under intersection, union, and converse. The relations may satisfy certain additional frame properties. Different from previous resolution decision procedures that are based on ordering refinements, our procedure is based on a selection refinement, the derivations of which correspond to derivations of tableaux or sequent proof systems. This procedure has the advantage that it can be used both as a satisfiability checker and as a model builder. We show that tableaux and sequent-style proof systems can be polynomially simulated with our procedure. Furthermore, the finite model property follows for a number of extended modal logics.

modal logic automated theorem proving resolution decision procedures tableaux proof systems satisfiability testing model generation simulation relative proof complexity relative search space complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréka, H., van Benthem, J. and Németi, I.: Back and forth between modal logic and classical logic, Bull. IGPL 3(5) (1995), 685–720.Google Scholar
  2. 2.
    Auffray, Y. and Enjalbert, P.: Modal theorem proving: An equational viewpoint, J. Logic Comput. 2(3) (1992), 247–297.Google Scholar
  3. 3.
    Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J. and Franconi, E.: An empirical analysis of optimization techniques for terminological representation systems, or: Making KRIS getGoogle Scholar
  4. 22.
    Horrocks, I. and Patel-Schneider, P. F.: FaCT and DLP, in H. de Swart (ed.), Automated Reasoning with Analytic Tableaux and Related Methods: TABLEAUX'98, Lecture Notes in Comput. Sci. 1397, Springer, 1998, pp. 27–30.Google Scholar
  5. 23.
    Hustadt, U. and Schmidt, R. A.: On evaluating decision procedures for modal logics, in M. Pollack (ed.), Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI'97), Morgan Kaufmann, 1997, pp. 202–207.Google Scholar
  6. 24.
    Hustadt, U. and Schmidt, R. A.: An empirical analysis of modal theorem provers, J. Appl. Non-Classical Logics 9(4) (1999), 479–522.Google Scholar
  7. 25.
    Hustadt, U. and Schmidt, R. A.: Issues of decidability for description logics in the framework of resolution, in R. Caferra and G. Salzer (eds.), First-Order Theorem Proving: FTP'98, Lecture Notes in Artificial Intelligence 1761, Springer, 2000, pp. 192–206.Google Scholar
  8. 26.
    Hustadt, U. and Schmidt, R. A.: Maslov's class K revisited, in H. Ganzinger (ed.), Automated Deduction — CADE-16, Lecture Notes in Artificial Intelligence 1632, Springer, 1999, pp. 172–186.Google Scholar
  9. 27.
    Hustadt, U., Schmidt, R. A. and Weidenbach, C.: Optimised functional translation and resolution, in: H. de Swart (ed.), Automated Reasoning with Analytic Tableaux and Related Methods: TABLEAUX'98, Lecture Notes in Comput. Sci. 1397, Springer, 1998, pp. 36–37.Google Scholar
  10. 28.
    Jeroslow, R. and Wang, J.: Solving propositional satisfiability problems, Ann. of Math. and Artificial Intelligence 1 (1990), 167–187.Google Scholar
  11. 29.
    Joyner Jr., W. H.: Resolution strategies as decision procedures, J. ACM 23(3) (1976), 398–417.Google Scholar
  12. 30.
    Lutz, C., Sattler, U. and Tobies, S.: A suggestion of an n-ary description logic, in P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider (eds.), Proc. of Intern. Workshop on Description Logics'99. Linköping University, 1999, pp. 81–85.Google Scholar
  13. 31.
    Massacci, F.: Strongly analytic tableaux for normal modal logics, in Automated Deduction: CADE-12, Lecture Notes in Artificial Intelligence 814, Springer, 1994, pp. 723–737.Google Scholar
  14. 32.
    Massacci, F.: Simplification: A general constraint propagation technique for propositional and modal tableaux, in H. de Swart (ed.), Automated Reasoning with Analytic Tableaux and Related Methods: TABLEAUX'98, Lecture Notes in Artificial Intelligence 1397, Springer, 1998, pp. 217–231.Google Scholar
  15. 33.
    Mints, G.: A resolution method for non-classical logics, Semiotika and Informatika 25 (1986), 120–135.Google Scholar
  16. 34.
    Mints, G.: Resolution calculi for modal logics, Amer. Math. Soc. Transl. 143 (1989), 1–14.Google Scholar
  17. 35.
    Mortimer, M.: On languages with two variables, Z. Math. Logik Grundlag. Math. 21 (1975), 135–140.Google Scholar
  18. 36.
    Ohlbach, H. J. and Schmidt, R. A.: Functional translation and second-order frame properties of modal logics, J. Logic and Comput. 7(5) (1997), 581–603.Google Scholar
  19. 37.
    Paramasivam, M. and Plaisted, D. A.: Automated deduction techniques for classification in description logic systems, J. Automated Reasoning 20(3) (1998), 337–364.Google Scholar
  20. 38.
    Plaisted, D. A. and Greenbaum, S.: A structure-preserving clause form translation, J. Symbolic Comput. 2 (1986), 293–304.Google Scholar
  21. 39.
    Plaisted, D. A. and Zhu, Y.: The Efficiency of Theorem Proving Strategies, Vieweg, 1997.Google Scholar
  22. 40.
    Schmidt, R. A.: Decidability by resolution for propositional modal logics, J. Automated Reasoning 22(4) (1999), 379–396.Google Scholar
  23. 41.
    Tseitin, G. S.: On the complexity of derivations in propositional calculus, in A. O. Slisenko (ed.), Studies in Constructive Mathematics and Mathematical Logic, Part II, Consultants Bureau, New York, 1970, pp. 115–125.Google Scholar
  24. 42.
    Urquhart, A.: The complexity of propositional proofs, Bull. Symbolic Logic 1(4) (1995), 425–467.Google Scholar
  25. 43.
    Weidenbach, C., Meyer, C., Cohrs, C., Engel, T. and Keen, E.: SPASS V0.77, J. Automated Reasoning 21(1) (1998), 113.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ullrich Hustadt
    • 1
  • Renate A. Schmidt
    • 1
  1. 1.Centre for Agent Research and Development, Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK. e-mail

Personalised recommendations