Advertisement

Journal of Algebraic Combinatorics

, Volume 15, Issue 3, pp 253–270 | Cite as

Order Structure on the Algebra of Permutations and of Planar Binary Trees

  • Jean-Louis Loday
  • María O. Ronco
Article

Abstract

Let Xn be either the symmetric group on n letters, the set of planar binary n-trees or the set of vertices of the (n − 1)-dimensional cube. In each case there exists a graded associative product on ⊕n≥0K[Xn]. We prove that it can be described explicitly by using the weak Bruhat order on Sn, the left-to-right order on planar trees, the lexicographic order in the cube case.

planar binary tree order structure weak Bruhat order algebra of permutations dendriform algebra 

References

  1. 1.
    N. Bourbaki, Groupes et algèbres de Lie, Hermann Paris 1968; reprinted Masson, Paris, 1981, Ch. 4–6.Google Scholar
  2. 2.
    Chr. Brouder and A. Frabetti, “Renormalization of QED with trees,” Eur. Phys. J. C 19 (2001), 715–741.Google Scholar
  3. 3.
    I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh, and J.-Y. Thibon, “Noncommutative symmetric functions,” Adv. Math. 112(2) (1995), 218–348.Google Scholar
  4. 4.
    J.-L. Loday, “Dialgebras,” in Dialgebras and Related Operads, Springer Lecture Notes in Math., Vol. 1763, (2001), 7–66.Google Scholar
  5. 5.
    J.-L. Loday and M.O. Ronco, “Hopf algebra of the planar binary trees,” Adv. Math. 139(2) (1998), 293–309.Google Scholar
  6. 6.
    C. Malvenuto and Chr. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descent algebra,” J. Algebra 177 (1995), 967–982.Google Scholar
  7. 7.
    L. Solomon, “A Mackey formula in the group ring of a Coxeter group,” J. Algebra 41 (1976), 255–264.Google Scholar
  8. 8.
    R.P. Stanley, Enumerative Combinatorics, Vol. I, TheWadsworth and Brooks/Cole Mathematics Series, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jean-Louis Loday
    • 1
  • María O. Ronco
    • 2
  1. 1.Institut de Recherche Mathématique AvancéeCNRS et UniversitéStrasbourg CedexFrance
  2. 2.Departamento de Matemática, Ciclo Básico ComúnUniversidad de Buenos AiresBuenos-AiresArgentina

Personalised recommendations