Natural Computing

, Volume 1, Issue 1, pp 3–52 | Cite as

Evolution strategies – A comprehensive introduction

  • Hans-Georg Beyer
  • Hans-Paul Schwefel
Article

Abstract

This article gives a comprehensive introduction into one of the main branches of evolutionary computation – the evolution strategies (ES) the history of which dates back to the 1960s in Germany. Starting from a survey of history the philosophical background is explained in order to make understandable why ES are realized in the way they are. Basic ES algorithms and design principles for variation and selection operators as well as theoretical issues are presented, and future branches of ES research are discussed.

computational intelligence Darwinian evolution design principles for genetic operators evolutionary computation evolution strategies optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg L (1994) The evolution of evolvability in genetic programming. In: Kinnear K (ed) Advances in Genetic Programming, pp. 47-74. MIT Press, Cambridge, MAGoogle Scholar
  2. Arnold BC, Balakrishnan N and Nagaraja HN (1992) A First Course in Order Statistics.Wiley, New YorkGoogle Scholar
  3. Arnold DV and Beyer H-G (2000a) Local performance of the (1 + 1)-ES in a noisy environment. IEEE Transactions on Evolutionary Computation. accepted for publicationGoogle Scholar
  4. Arnold DV and Beyer H-G (2000b) Performance analysis of evolution strategies with multirecombination in high-dimensional ℝN-search spaces disturbed by noise. Theoretical Computer Science. In printGoogle Scholar
  5. Arnold DV and Beyer H-G (2001) Local performance of the (µ/µ I , ?)-ES in a noisy environment. In: Martin W and Spears W (eds) Foundations of Genetic Algorithms, 6, pp. 127-141. Morgan Kaufmann, San Francisco, CAGoogle Scholar
  6. Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, NYGoogle Scholar
  7. Bäck T, Fogel D and Michalewicz Z (eds) (1997) Handbook of evolutionary computation. IOP Publishing and Oxford University Press, New YorkGoogle Scholar
  8. Beyer H-G (1990) Simulation of steady states in dissipative systems by darwin's paradigm of evolution. J. Non-Equilib. Thermodyn. 15: 45-58Google Scholar
  9. Beyer H-G (1992) Some aspects of the 'evolution strategy' for solving tsp-like optimization problems. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 361-370. Elsevier, AmsterdamGoogle Scholar
  10. Beyer H-G (1995) Toward a theory of evolution strategies: on the benefit of sex-the (µ/µ, ?)-theory. Evolutionary Computation 3(1): 81-111Google Scholar
  11. Beyer H-G (1996) Toward a theory of evolution strategies: Self-adaptation. Evolutionary Computation 3(3): 311-347Google Scholar
  12. Beyer H-G (1997) An alternative explanation for the manner in which genetic algorithms operate. BioSystems 41: 1-15Google Scholar
  13. Beyer H-G (2000) Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4): 239-267Google Scholar
  14. Beyer H-G (2001a) On the performance of (1, ?)-evolution strategies for the ridge function class. IEEE Transactions on Evolutionary Computation 5(3): 218-235Google Scholar
  15. Beyer H-G (2001b) The Theory of Evolution Strategies. Natural Computing Series. Springer, HeidelbergGoogle Scholar
  16. Beyer H-G and Deb K (2001) On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation 5(3): 250-270Google Scholar
  17. Born J (1978) Evolutionsstrategien zur numerischen Lösung von Adaptationsaufgaben. Dissertation A. Humboldt-Universität, BerlinGoogle Scholar
  18. De Jong K, David D, Fogel B and Schwefel H-P (1997) A history of evolutionary computation. In: Bäck T, Fogel DB and Michalewicz Z (eds) Handbook of Evolutionary Computation, pp. A2.3:1-12. Oxford University Press, New York, and Institute of Physics Publishing, BristolGoogle Scholar
  19. Droste S, Jansen T and Wegener I (1998a) On the optimization of unimodal functions with the (1 + 1) evolutionary algorithm. In: Eiben A, Bäck T, Schoenauer M and Schwefel H-P (eds) Parallel Problem Solving from Nature, 5, pp. 13-22. Springer-Verlag, HeidelbergGoogle Scholar
  20. Droste S, Jansen T and Wegener I (1998b) A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs. Evolutionary Computation 6(2): 185-196Google Scholar
  21. Droste S and Wiesmann D (2000) Metric based evolutionary algorithms. In: Poli R, Banzhaf W, Langdon W, Miller J, Nordin P and Fogarty T (eds) Proc. of the Third European Conference on Genetic Programming, EuroGP 2000, pp. 29-43. Springer, BerlinGoogle Scholar
  22. Eiben AE, Hinterding R and Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2): 124-141Google Scholar
  23. Fisz M (1971) Wahrscheinlichkeitsrechnung und mathematische Statistik. VEB Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  24. Fogel D (ed) (1998) Evolutionary Computation: The Fossil Record. IEEE Press, Piscataway, NJGoogle Scholar
  25. Fogel DB, Schwefel H-P, Bäck T and Yao X (eds) (1998) Proc. Second IEEE World Congress on Computational Intelligence (WCCI'98) with Fifth IEEE Conf. Evolutionary Computation (IEEE/ICEC'98) Anchorage AK, May 4-9, 1998 IEEE Press, Piscataway, NJGoogle Scholar
  26. Fogel LJ (1962) Autonomous automata. Industrial Research 4: 14-19Google Scholar
  27. Fogel LJ, Owens AJ and Walsh MJ (1966) Artificial Intelligence through Simulated Evolution. Wiley, New YorkGoogle Scholar
  28. Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MAGoogle Scholar
  29. Grünz L and Beyer H-G (1999) Some observations on the interaction of recombination and self-adaptation in evolution strategies. In: Angeline P (ed) Proceedings of the CEC'99 Conference, pp. 639-645. IEEE, Piscataway, NJGoogle Scholar
  30. Hansen N and Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: Proceedings of 1996 IEEE Int'l Conf. on Evolutionary Computation (ICEC '96), pp. 312-317. NY, IEEE PressGoogle Scholar
  31. Hansen N and Ostermeier A (1997) Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: The (µ/µ I , ?)-CMA-ES. In: Zimmermann HJ (ed) 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT'97), pp. 650-654. Aachen, Germany, Verlag MainzGoogle Scholar
  32. Hansen N and A Ostermeier (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2): 159-195Google Scholar
  33. Hartmann D (1974) Optimierung balkenartiger Zylinderschalen aus Stahlbeton mit elastischem und plastischem Werkstoffverhalten. Dr.-Ing. Dissertation, University of Dortmund, DortmundGoogle Scholar
  34. Herdy M (1990) Application of the 'evolutionsstrategie' to discrete optimization problems. In: Schwefel H-P and Männer R (eds) Parallel Problem Solving from Nature, 1, pp. 188-192. Springer-Verlag, Berlin.Google Scholar
  35. Herdy M (1992) Reproductive isolation as strategy parameter in hierarchically organized evolution strategies. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 207-217. Elsevier, Amsterdam.Google Scholar
  36. Holland JH (1962) Outline for a logical theory of adaptive systems. JACM 9: 297-314Google Scholar
  37. Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann ArborGoogle Scholar
  38. Holland JH (1995) Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading, MAGoogle Scholar
  39. Horn J, Goldberg D and Deb K (1994) Long path problems. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 149-158. Springer-Verlag, HeidelbergGoogle Scholar
  40. Jansen T (2000) Theoretische analyse evolutionärer Algorithmen unter dem Aspekt der Optimierung in diskreten Suchräumen. Phd thesis, Univ. of Dortmund, Dortmund, Germany (in German).Google Scholar
  41. Jansen T and Wegener I (1999) On the analysis of evolutionary algorithms-a proof that crossover really can help. In: Nesetril J (ed) Proceedings of the 7th Annual European Symposium on Algorithms (ESA '99), pp. 184-193. Berlin, Germany, LNCS 1643, SpringerGoogle Scholar
  42. Jansen T and Wegener I (2000) On the choice of the mutation probability for the (1 + 1) EA. In: M Schoenauer (ed) Parallel Problem Solving from Nature, 6, pp. 89-98. Springer, HeidelbergGoogle Scholar
  43. Jansen T and Wegener I (2001) Real royal road functions-where crossover provably is essential. In: Spector L (ed) GECCO'01: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco, CAGoogle Scholar
  44. Jaynes ET (1979) Where do we stand on maximum entropy? In: Levine R and Tribus M (eds) The Maximum Entropy Formalism, pp. 15-118Google Scholar
  45. Kappler C, Bäck T, Heistermann J, Van de Velde A and Zamparelli M (1996) Refueling of a nuclear power plant: comparison of a naive and a specialized mutation operator. In: Voigt H-M, Ebeling W, Rechenberg I and Schwefel H-P (eds) Parallel Problem Solving from Nature-PPSN IV, Int'l Conf. Evolutionary Computation, pp. 829-838. Springer, BerlinGoogle Scholar
  46. Klockgether J and Schwefel H-P (1970) Two-phase nozzle and hollow core jet experiments. In: Elliott DG (ed) Proc. 11th Symp. Engineering Aspects of Magnetohydrodynamics, pp. 141-148. California Institute of Technology, Pasadena CAGoogle Scholar
  47. Kursawe F (1992) Evolution strategies for vector optimization. In: Tzeng G-H and Yu P-L (eds) Preliminary Proc. Tenth Int'l Conf.Multiple Criteria Decision Making, pp. 187-193. National Chiao Tung University, TaipeiGoogle Scholar
  48. Kursawe F (1999) Grundlegende empirische Untersuchungen der Parameter von Evolutionsstrategien-Metastrategien. Dr. rer. nat.-Dissertation, University of Dortmund, Department of Computer Science, Chair of Systems Analysis. Schwefel.Google Scholar
  49. Laumanns M, Rudolph G and Schwefel H-P (1998) A spatial predator-prey approach to multi-objective optimization. In: Eiben AE, Bäck T, Schoenauer M and Schwefel H-P (eds) Parallel Problem Solving from Nature-PPSN V, Fifth Int'l Conf., Amsterdam, The Netherlands, September 27-30, 1998, Proc., pp. 241-249. Springer, BerlinGoogle Scholar
  50. Laumanns M, Rudolph G and Schwefel H-P (2001) Mutation control and convergence in evolutionary multi-objective optimization. In: Matousek R and Osmera P (eds) Proc. Seventh Int'l Conf. Soft Computing (MENDEL'01), pp. 24-29. Brno University of Technology, Brno, Czech RepublicGoogle Scholar
  51. Lin S and Kernighan BW (1973) An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21: 498-516Google Scholar
  52. Lohmann R (1992) Structure evolution and incomplete induction. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature, 2, pp. 175-185. Elsevier, AmsterdamGoogle Scholar
  53. Michalewicz Z, Schaffer JD, Schwefel H-P, Fogel DB and Kitano H (eds) (1994) Proc. First IEEE Conf. Evolutionary Computation, Vol. I (oral presentations) and II (posters) of IEEE World Congress on Computational Intelligence. Orlando FL. The Institute of Electrical and Electronics Engineers, IEEE-Press, Piscataway NJGoogle Scholar
  54. Mitchell M, Holland J and Forrest S (1994) When will a genetic algorithm outperform hill climbing. In: Cowan J, Tesauro G and Alspector J (eds) Advances in Neural Information Processing Systems, pp. 51-58. Morgan Kaufmann, San Mateo, CAGoogle Scholar
  55. Motwani R and Raghavan P (1995) Randomized Algorithms. Cambridge University Press, New York, NYGoogle Scholar
  56. Mühlenbein H and Mahnig T (1999) FDA a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation 7(4): 353-376Google Scholar
  57. Nürnberg H-T and Beyer H-G (1997) The dynamics of evolution strategies in the optimization of traveling salesman problems. In: Angeline P, Reynolds R, McDonnell J and Eberhart R (eds) Evolutionary Programming VI: Proceedings of the Sixth Annual Conference on Evolutionary Programming, pp. 349-359. Springer-Verlag, HeidelbergGoogle Scholar
  58. Ostermeier A, Gawelczyk A and Hansen N (1994) Step-size adaptation based on non-local use of selection information. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 189-198. Springer-Verlag, HeidelbergGoogle Scholar
  59. Oyman AI (1999) Convergence behavior of evolution strategies on ridge functions. Ph.D. Thesis, University of Dortmund, Department of Computer ScienceGoogle Scholar
  60. Oyman AI and Beyer H-G (2000) Analysis of the (µ/µ, ?)-ES on the parabolic ridge. Evolutionary Computation 8(3): 267-289Google Scholar
  61. Oyman AI, Beyer H-G and Schwefel H-P (2000) Analysis of a simple ES on the “parabolic ridge”. Evolutionary Computation 8(3): 249-265Google Scholar
  62. Pelikan M, Goldberg D and Cantu-Paz E (1999) BOA: the bayesian optimization algorithm. In: Banzhaf W, Daida J, Eiben A, Garzon M, Honavar V, Jakiela M and Smith R (eds) GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 525-532. Morgan Kaufmann, San Francisco, CAGoogle Scholar
  63. Rappl G (1989), On linear convergence of a class of random search algorithms. Zeitschrift f. angew. Math. Mech. (ZAMM) 69(1): 37-45Google Scholar
  64. Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Farnborough p. Library Translation 1122Google Scholar
  65. Rechenberg I (1971) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Dr.-Ing. Thesis, Technical University of Berlin, Department of Process EngineeringGoogle Scholar
  66. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, StuttgartGoogle Scholar
  67. Rechenberg I (1978) Evolutionsstrategien. In: Schneider B and Ranft U (eds) Simulationsmethoden in der Medizin und Biologie, pp. 83-114. Springer-Verlag, BerlinGoogle Scholar
  68. Rechenberg I (1994) Evolutionsstrategie '94. Frommann-Holzboog Verlag, StuttgartGoogle Scholar
  69. Rudolph G (1992) On correlated mutations in evolution strategies. In: Männer R and Manderick B (eds) Parallel Problem Solving from Nature-Proc. Second Conf. PPSN, pp. 105-114. Free University of Brussels, Elsevier, AmsterdamGoogle Scholar
  70. Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature, 3, pp. 139-148. Springer-Verlag, HeidelbergGoogle Scholar
  71. Rudolph G (1997a) Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kova?, Hamburg. PhD-ThesisGoogle Scholar
  72. Rudolph G (1997b) How mutation and selection solve long-path problems in polynomial expected time. Evolutionary Computation 4(2): 195-205Google Scholar
  73. Rudolph G and Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Zalzala A and Eberhart R (eds) Proc. 2000 Congress on Evolutionary Computation (CEC'00), Vol. 2. La Jolla CA, pp. 1010-1016. IEEE Press, Piscataway NJGoogle Scholar
  74. Schwefel H-P (1965) Kybernetische Evolution als Strategie der exprimentellen Forschung in der Strömungstechnik. Master's thesis, Technical University of BerlinGoogle Scholar
  75. Schwefel H-P (1968) Experimentelle Optimierung einer Zweiphasendüse Teil I. Technical Report No. 35 of the Project MHD-Staustrahlrohr 11.034/68, AEG Research Institute, BerlinGoogle Scholar
  76. Schwefel H-P (1975) Evolutionsstrategie und numerische Optimierung. Dissertation, TU Berlin, GermanyGoogle Scholar
  77. Schwefel H-P (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Interdisciplinary systems research; 26. Birkhäuser, BaselGoogle Scholar
  78. Schwefel H-P (1981) Numerical Optimization of Computer Models. Wiley, ChichesterGoogle Scholar
  79. Schwefel H-P (1987) Collective phenomena in evolutionary systems. In: Checkland P and Kiss I (eds) Problems of Constancy and Change-the Complementarity of Systems Approaches to Complexity, Papers presented at the 31st Annual Meeting of the Int'l Soc. for General System Research, Vol. 2. Budapest, pp. 1025-1033. Int'l Soc. for General System ResearchGoogle Scholar
  80. Schwefel H-P (1995) Evolution and Optimum Seeking. Wiley, New York, NYGoogle Scholar
  81. Schwefel H-P and Kursawe F (1998) On natural life's tricks to survive and evolve. In: Fogel DB, Schwefel H-P, Bäck T and Yao X (eds) Proc. Second IEEE World Congress on Computational Intelligence (WCCI'98) with Fifth IEEE Conf. Evolutionary Computation (IEEE/ICEC'98), pp. 1-8. Anchorage AK, IEEE Press, Piscataway NJGoogle Scholar
  82. Schwefel H-P and Rudolph G (1995) Contemporary evolution strategies. In: Morana F, Moreno A, Merelo JJ and Chacon P (eds) Advances in Artificial Life. Third ECAL Proceedings, pp. 893-907. Springer-Verlag, BerlinGoogle Scholar
  83. Sendhoff B, Kreuz M and von Seelen W (1997) A condition for the genotype-phenotype mapping: Causality. In: Bäck T (ed) Proc. 7th Int'l Conf. on Genetic Algorithms, pp. 73-80. Morgan Kaufmann Publishers, Inc., Francisco, CAGoogle Scholar
  84. Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed) Proc. 3rd Int'l Conf. on Genetic Algorithms, pp. 2-9. Morgan Kaufmann, San Mateo, CA.Google Scholar
  85. Wegener I (2000) On the design and analysis of evolutionary algorithms. In: Workshop on Algorithm Engineering as a New Paradigm. Kyoto, pp. 36-47. Research Institute for Mathematical Science, Kyoto Univ.Google Scholar
  86. Wegener I (2001) Theoretical aspects of evolutionary algorithms. In: Spirakis P (ed), Proc. 28th International Colloquium on Automata, Languages and Programming. Springer-Verlag, BerlinGoogle Scholar
  87. Wegener I and Witt C (2001) On the analysis of a simple evolutionary algorithm on quadratic pseudo-Boolean functions. Submitted to Journal of Discrete AlgorithmsGoogle Scholar
  88. Yao X (1999) Evolving artificial neural networks. Proceedings of the IEEE 87(9): 1423-1447Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Hans-Georg Beyer
    • 1
  • Hans-Paul Schwefel
    • 1
  1. 1.Department of Computer Science XIUniversity of DortmundDortmundGermany

Personalised recommendations