Advertisement

Transition Metal Chemistry

, Volume 27, Issue 4, pp 353–358 | Cite as

Transition metal chemistry in ionic liquids

  • Paul J. Dyson
Article

Abstract

Transition metal chemistry in ionic liquids has increased dramatically in the last few years. Ionic liquids can be used to prepare transition metal complexes and clusters. They can be used to carry out stoichiometric reactions on ligands attached to transition metal ions, and they can also be used to support transition metal catalysts. Ionic liquids composed of organic cations and transition metal anions are also known. Each of these areas will be discussed in this article.

Keywords

Physical Chemistry Inorganic Chemistry Ionic Liquid Metal Complex Metal Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sugden and H. Wilkins, J. Chem. Soc., 1291 (1929), and references therein.Google Scholar
  2. 2.
    F.H. Hurley and T.P. Wier, Jr., J. Electrochem. Soc., 98, 207 (1951).Google Scholar
  3. 3.
    J.S. Wilkes, J.A. Levisky, R.A. Wilson and C.L. Hussey, Inorg. Chem., 21, 1263 (1982).Google Scholar
  4. 4.
    K.R. Seddon, A. Stark and M.-J. Torres, Pure Appl. Chem., 72, 2275 (2000), and references therein.Google Scholar
  5. 5. (a)
    H.A. Øye, M. Jagtoyen, T. Oksefjell and J.S. Wilkes, Mater. Sci. Forum., 73-75, 183 (1991); (b) P. Bonhôte, A.-P. Dias, N. Papageoriou, K. Kalyanasundaram and M. Grätzel, Inorg. Chem., 35, 1168 (1996).Google Scholar
  6. 6.
    Y. Chauvin, L. Mußmann and H. Olivier, Angew. Chem. Int. Ed. Engl., 34, 2698 (1995).Google Scholar
  7. 7.
    P.J. Dyson, M.C. Grossel, N. Srinivasan, T. Vine, T. Welton, D.J. Williams, A.J. White and T. Zigras, J. Chem. Soc., Dalton Trans., 3465 (1997).Google Scholar
  8. 8.
    N. Srinivasan, Ph.D. Thesis, Imperial College, London.Google Scholar
  9. 9.
    D. Crofts, P.J. Dyson, K.M. Sanderson, N. Srinivasan and T. Welton, J. Organomet. Chemal., 573, 292 (1999).Google Scholar
  10. 10.
    A. Stark, B.L. MacLean and R.D. Singer, J. Chem. Soc., Dalton Trans., 63 (1999).Google Scholar
  11. 11.
    D. Crofts, P.J. Dyson, K.M. Sanderson, N. Srinivasan and T. Welton, in M. Gaune-Escard, (ed.) Advances in Molten Salts: From Structural Aspects to Waste Processing, Begell House Inc., New York, 1999, p. 624.Google Scholar
  12. 12.
    M. Husan, I.V. Kozhevnikov, M.R.H. Siddiqui, A. Steiner and N. Winterton, J. Chem. Res. (S), 392 (2000).Google Scholar
  13. 13.
    Y. Chauvin, B. Gilbert and I. Guibard, J. Chem. Soc., Chem. Commun., 1715 (1990).Google Scholar
  14. 14.
    R.T. Carlin and R.A. Osteryoung, J. Mol. Catal., 63, 125 (1990).Google Scholar
  15. 15.
    C.J. Adams, M.J. Earle, G. Roberts and K.R. Seddon, Chem. Commun., 2097 (1998), and references therein.Google Scholar
  16. 16. (a)
    G. Meister, G. Rheinwald, H. Stoecki-Evans and G. Süss-Fink, J. Chem. Soc., Dalton Trans., 3215 (1994); (b) L. Plasseraud and G. Süss-Fink, J. Organometal Chem., 539, 163 (1997); (c) E.G. Fidalgo, L. Plasseraud and G. Süss-Fink, J. Mol. Catal. A, 132, 5 (1998).Google Scholar
  17. 17.
    P.J. Dyson, D.J. Ellis, D.G. Parker and T. Welton, Chem. Commun., 25 (1999).Google Scholar
  18. 18. (a)
    P.A.Z. Suarez, J.E.L. Dullius, S. Einloft, R.F. de Souza and J. Dupont, Polyhedron, 15, 1217 (1996); (b) P.A.Z. Suarez, J.E.L. Dullius, S. Einloft, R.F. de Souza and J. Dupont, Inorg. Chim. Acta, 255, 207 (1997).Google Scholar
  19. 19.
    L.A. Müller, J. Dupont and R.F. de Souza, Macromol. Rapid Commun., 19, 409 (1998).Google Scholar
  20. 20.
    A.L. Monteiro, F.K. Zinn, R.F. de Souza and J. Dupont, Tetrahedron Asymmetry, 2, 177 (1997).Google Scholar
  21. 21.
    P.J. Dyson, D.J. Ellis and T. Welton, Can. J. Chem., 79, 705 (2001).Google Scholar
  22. 22.
    C.C. Brasse, U. Englert, A. Salzer, H. Waffenschmidt and P. Wesserscheid, Organometallics, 19, 3818 (2000).Google Scholar
  23. 23.
    P. Wesserscheid and H. Waffenschmidt, J. Mol. Catal. A: Chemical, 164, 61 (2000).Google Scholar
  24. 24.
    P.J. Dyson, D.J. Ellis, D.G. Parker and T. Welton, J. Mol. Catal. A: Chemical, 150, 71 (1999).Google Scholar
  25. 25.
    P.J. Dyson, K. Russell and T. Welton, Inorg. Chem. Commun., 4, 571 (2001).Google Scholar
  26. 26.
    C.E. Song, C.R. Oh, E.J. Roh and D.J. Choo, Chem. Commun., 1743 (2000).Google Scholar
  27. 27.
    L. Xu, W. Chen, J. Ross and J. Xiao, Org. Lett., 3, 295 (2001).Google Scholar
  28. 28.
    G. Bar, A.F. Parsons and C.B. Thomas, Chem. Commun., 1350 (2001).Google Scholar
  29. 29.
    Y. Chauvin and H. Olivier-Bourbigou, CHEMTECH, 25, 26 (1995).Google Scholar
  30. 30.
    R.J.C. Brown, P.J. Dyson, D.J. Ellis and T. Welton, Chem. Commun., 1862 (2001).Google Scholar
  31. 31.
    H. Alper, K.D. Logbo, H. des Abbayes, Tett. Lett., 2861 (1977).Google Scholar
  32. 32. (a)
    T. Welton, Chem. Rev., 99, 2071 (1999); (b) P. Wesserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Paul J. Dyson
    • 1
  1. 1.Department of ChemistryThe University of YorkHeslington, YorkUK

Personalised recommendations