Advertisement

Artificial Intelligence Review

, Volume 17, Issue 3, pp 169–222 | Cite as

Explanation and Argumentation Capabilities:Towards the Creation of More Persuasive Agents

  • B. Moulin
  • H. Irandoust
  • M. Bélanger
  • G. Desbordes
Article

Abstract

During the past two decades many research teams have worked on the enhancement of the explanation capabilities of knowledge-based systems and decision support systems. During the same period, other researchers have worked on the development of argumentative techniques for software systems. We think that it would be interesting for the researchers belonging to these different communities to share their experiences and to develop systems that take advantage of the advances gained in each domain.

We start by reviewing the evolution of explanation systems from the simple reasoning traces associated with early expert systems to recent research on interactive and collaborative explanations. We then discuss the characteristics of critiquing systems that test the credibility of the user's solution. The rest of the paper deals with the different application domains that use argumentative techniques. First, we discuss how argumentative reasoning can be captured by a general structure in which a given claim or conclusions inferred from a set of data and how this argument structure relates to pragmatic knowledge, explanation production and practical reasoning. We discuss the role of argument indefeasible reasoning and present some works in the new field of computer-mediated defeasibleargumentation. We review different application domains such as computer-mediated communication, design rationale, crisis management and knowledge management, in which argumentation support tools are used. We describe models in which arguments are associated to mental attitudes such as goals, plans and beliefs. We present recent advances in the application of argumentative techniques to multi-agent systems. Finally, we propose research perspectives for the integration of explanation and argumentation capabilities in knowledge-based systems and make suggestions for enhancing the argumentation and persuasion capabilities of software agents

Keywords

Expert System Decision Support System MultiAgent System User Model Software Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, S. M. & Evans, G. W. (1988). The Integration of Multiple Experts: A Review of Methodologies. In Turban E. & Watkins P. R. (eds.), Applied Expert Systems, 47–53. North Holland: Amsterdam.Google Scholar
  2. Allen, J. F. & Perrault, C. R. (1980). Analyzing Intention in Utterances. Artificial Intelligence 15: 143–178.CrossRefGoogle Scholar
  3. Alvarado, S. J. (1990). Understanding Editorial Text: A Computer Model of Argument Comprehension. Kluwer Academic Publishers.Google Scholar
  4. Amgoud, L. & Cayrol, C. (2000). A Reasoning Model Based on the Production of Acceptable Arguments. In Linköping Series of Articles in Computer and Information Science, 5 (http://www.ida.liu.se/ext/epa/cis/ufn-00/01/tcover.html).Google Scholar
  5. Amgoud, L., Maudet, N. & Parsons S. (2000). Modeling Dialogues Using Argumentation. In Proceedings of the 4th International Conference on MultiAgent Systems (ICMAS2000), 31-38. Boston, USA.Google Scholar
  6. Anscombre, J-C. (1995). Théorie des topoï. Kimé: Paris.Google Scholar
  7. Anscombre, J-C. & Ducrot O. (1983). L'argumentation dans la langue. Magrada: Bruxelles.Google Scholar
  8. Ashley, K. D. (1990). Modeling Legal Argument: Reasoning with Cases and Hypothetical. The MIT Press.Google Scholar
  9. Baker, M. (1992). The Collaborative Construction of Explanations, Actes des Deuxièmes Journées du PRC-GDR-IA du CNRS, 25-40. Sophia Antipolis: France (In French).Google Scholar
  10. Baker, M., Dessalles, J-L., Joab, M., Raccah, P-Y., Safar, B. & Schlienger, D. (1994). La génération d'explications négociées dans un système à base de connaissances, Actes des Cinquièmes Journées du PRC-GDR-IA, 296–316. Teknéa: Toulouse.Google Scholar
  11. Ball, W. J. (1994). Using Virgil to Analyse Public Policy Arguments: A System Based on Toulmin's Informal Logic. Social Science Computer Review 12: 26–37.CrossRefGoogle Scholar
  12. Baroni, P., Giacomin, M. & Guida, G. (2000). Extending Abstract Argumentation Systems Theory. Artificial Intelligence 120: 251–270.zbMATHMathSciNetCrossRefGoogle Scholar
  13. van Beek, P. (1987). A Model for Generating Better Explanations. Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics. Palo Alto, California.Google Scholar
  14. Bell, R. A., Zahn, C. J. & Hoper, R. (1984). Disclaiming: A Test of Two Competing Views. Communications Quaterly 32: 28–36.Google Scholar
  15. Bench-Capon, T. J. M., Lowes, D. & McEnery, A. M. (1991). Argument-Based Explanation of Logic Programs. Knowledge Based Systems 4: 177–183.CrossRefGoogle Scholar
  16. Bench-Capon, T. M., Coenen, F. & Orton, P. (1993). Argument-Based Explanation of the British Nationality Act as a Logic Program. Computers, Law and AI 2: 53–66.Google Scholar
  17. Bench-Capon, T. J. M. (1998). Specification and Implementation of Toulmin Dialogue Game. In Hage, J. C., Bench-Capon, T., Koers, A., de Vey Mestdagh, C. & Grutters, C. (eds.) Jurix 1998, 5–20. Foundation for Legal Knowledge Based Systems, Gerard Noodt Institut: Nijmegen, The Netherlands.Google Scholar
  18. Benyon, D. & Murray, D. (1993). Applying User Modeling to Human-Computer Interaction Design. Artificial Intelligence Review 7: 199–225.CrossRefGoogle Scholar
  19. Birnbaum, L., Flowers, M. & McGuire, R. (1980). Towards an AI Model of Argumentation. In Proceedings of the AAAI Conference, 313-315.Google Scholar
  20. Buckingham, S. S. & Hammond, N. (1994). Argumentation-Based Design Rationale: What Use at What Cost? International Journal of Human-Computer Studies 40: 603–652.CrossRefGoogle Scholar
  21. Buckingham, S. S., MacLean, A., Bellotti, V. & Hammond N., (1997). Graphical Argumentation and Design Cognition. Human Computer Interaction 12: 267–300.CrossRefGoogle Scholar
  22. Bunt, H. C. (1990). Modular Incremental Modeling of Belief and Intention. Proceedings of the Second International Workshop on User Modeling.Google Scholar
  23. Carberry, S. (1988). Modeling the User's Plan and Goals. Computational Linguistics 14: 23–37.Google Scholar
  24. Carenini, G. & Moore, J. (1999). Tailoring Evaluative Arguments to User's Preferences. Proceedings of the Seventh International Conference on User Modeling (UM-99). Banff, Canada, June 20-24.Google Scholar
  25. Cavalli-Sforza, V. & Moore, J. D. (1992). Collaborating on Arguments and Explanations. In Working Notes for the AAAI Spring Symposium on Producing Cooperative Explanation. Stanford University, CA.Google Scholar
  26. Cawsey, A., Galliers, J., Reece, S. & Sparck-Jones, K. (1992). The Role of Explanations in Collaborative Problem Solving. In Brézillon, P. (ed.) Proceedings of the ECAI-92 Workshop on Improving the use of Knowledge-Based Systems with Explanations. Université Paris: Paris, 6.Google Scholar
  27. Cawsey, A. (1993). Planning Interactive Explanations. International Journal of Man-Machine Studies 38.Google Scholar
  28. Cawsey, A. (1995). Developing an Explanation Component for a Knowledge-Based System: Discussion. Expert Systems with Applications 8: 527–531.CrossRefGoogle Scholar
  29. Chandrasekaran, A. B. & Mittal, S. (1983). Deep versus Compiled Knowledge Approaches to Diagnostic Problem-Solving. International Journal of Man-Machine Studies 19: 425–436.CrossRefGoogle Scholar
  30. Chandrasekaran, B. (1986). Generic Tasks in Knowledge Based Reasoning. IEEE Expert 1: 23–30.CrossRefGoogle Scholar
  31. Chandrasekaran, B., Tanner, M. C. & Josephson, J. R. (1989). Explaining Control Strategies in Problem Solving. IEEE Expert 4: 9–24.CrossRefGoogle Scholar
  32. Chesnevar, C. I., Maguitman, A. G. & Loui, R. P. (2000). Logical Models of Argument. ACM Computing Surveys (to appear).Google Scholar
  33. Chin, D. N. (1993). Acquiring User Models. Artificial Intelligence Review 7: 185–197.CrossRefGoogle Scholar
  34. Clancey, W. J. (1983a). The Epistemology of a Rule-Based Expert System: A Framework for Explanation. Artificial Intelligence 20: 215–251.CrossRefGoogle Scholar
  35. Clancey, W. J. (1983b). The Advantages of Abstract Control Knowledge in Expert System Design. Proceedings of the National Conference on Artificial Intelligence.Google Scholar
  36. Clark, P. (1990). Representing knowledge as Arguments: Applying Expert system Technology to Judgemental Problem-Solving, In Addes, T. & Muir, R. (eds.) Research and Development in Expert Systems III, 147-159. Cambridge University Press.Google Scholar
  37. Clark, P. (1991). A Model of Argumentation and its Application in a Cooperative Expert System. Ph.D. Thesis, Turing Institute, University of Strathclyde, Glasgow, U.K.Google Scholar
  38. Cohen, R., Jones, M., Sanmugasunderam, A., Spencer, B. & Dent, L. (1989). Providing Responses Specific to a User's Goals and Background. International Journal of Expert Systems 2.Google Scholar
  39. Conklin, J. & Begeman, M. L. (1987). gIBIS: A Hypertext Tool for Team Design Deliberation. In Smith, J. B. & Halasz, F. (eds.) Hypertext'87, 247-251. Association for Computing Machinery.Google Scholar
  40. Conklin, J. & Begeman, M. L. (1988). gIBIS: A Hypertext Tool for Exploratory Policy Discussion. Transactions on Office Information Systems 6: 303–331.CrossRefGoogle Scholar
  41. Coombs, M. & Alty, J. (1984). Expert Systems: An Alternative Paradigm. International Journal of Man-Machine Studies 20: 21–43.CrossRefGoogle Scholar
  42. Daniel, B. H., Bares, W. H., Callaway, B. C. & Lester, J. C. (1999). Student-Sensitive Multimodal Explanation Generation for 3D Learning Environments. Proceedings of the 16th National Conference on Artificial Intelligence.Google Scholar
  43. Davis, R. (1982). Teiresias: Applications of Meta-Level Knowledge. In Davis, R. and Lenat, D. B. (eds.) Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill.Google Scholar
  44. Després, S. (1996). Enoncés graduels, prédicats graduels ou topoï? In (Raccah 1996), 57-77.Google Scholar
  45. Dhaliwal, J. S. (1993). An Experimental Investigation of the Use of Explanations Provided by Knowledge-Based Systems. Unpublished Ph.D Thesis, University of British Columbia, Management Information System Division.Google Scholar
  46. Dieng, R. (1989). Generation of Topoi from Expert Systems. CCAI 6:4, P.Y. Raccah (ed.), Gand.Google Scholar
  47. Dick, J. P. (1987). Conceptual Retrieval and Case Law. In Proceedings of the First International Conference on Artificial Intelligence and Law, 106-115. ACM Press.Google Scholar
  48. Draper, S. W. (1987). A User-Centered Concept of Explanation. Proceedings of the 2nd Workshop of the Explanation Special Interest Group, 15-23.Google Scholar
  49. Dubois, D. & Prades, H. (1987). Théorie des possibilités: Applications àla représentation des connaissances en informatique. Masson: Paris.Google Scholar
  50. Ducrot, O. (1991). Dire ou ne pas Dire, Principes de sémantique linguistique. Herman, Collection Savoir: Paris.Google Scholar
  51. Dung, P. H. (1995). On the acceptability of Arguments and Its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77: 321–357.zbMATHMathSciNetCrossRefGoogle Scholar
  52. Farley, A. M. & Freeman, K. (1995). Burden of Proof in Legal Argumentation. Proceedings of the Fifth International Conference on Artificial Intelligence and Law, 156–164. ACM Press: USA.CrossRefGoogle Scholar
  53. Feiner, S. K. & McKeown, K. R. (1991). Automating the Generation of Coordinated Multimedia Explanations. IEEE Computer 24: 33–41.CrossRefGoogle Scholar
  54. Fischer, G. & Mastaglio, Th. (1991). A Conceptual Framework for Knowledge-Based Critiquing Systems. Decision Support Systems 7: 355–378.CrossRefGoogle Scholar
  55. Flowers, M., McGuire, R. & Birnbaum, L. (1982). Adversary Arguments and the Logic of Personal Attacks. In Lehnert, W. G. & Ringle, M. G. (eds.) Strategies for Natural Language Processing. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
  56. Foner, L. (1997). Yenta: A Multi-Agent, Referral-BasedMatchmaking System. In Proceedings of the First International Conference on Autonomous Agents, 301-307.Google Scholar
  57. Forsythe, D. E. (1995). Using Ethnography in the Design of an Explanation System. Expert Systems with Applications 8: 403–417.CrossRefGoogle Scholar
  58. Freeman, K. (1994). Toward formalizing Dialectical Argumentation. PhD thesis, Department of Computer Science and Information Science, University of Oregon.Google Scholar
  59. Galarreta, D. & Trousse, B. (1996). Place de l'argumentation dans la conception d'outils d'assistance à une activité de résolution de problème. In (Raccah 1996), 79-103.Google Scholar
  60. Giboin, A. (1995). Les explications destinées aux utilisateurs de systèmes à base de connaissances. Bulletin de l'AFIA 20: 21–30.Google Scholar
  61. Gilbert, N. (1989). Explanation and Dialogue. Knowledge Engineering Review 4: 205–231.CrossRefGoogle Scholar
  62. Giunchiglia, F. & Serafini, L. (1994). Multi-Language-Hierarchical Logics (or: How We Can Do Without Modal Logic). Artificial Intelligence 65: 29–70.zbMATHMathSciNetCrossRefGoogle Scholar
  63. Goguen, J. A., Weiner, J. L. & Linde, C. (1983). Reasoning and Natural Explanation. International Journal of Man-Machine Studies 19: 521–559.CrossRefGoogle Scholar
  64. Gordon, T. F. (1995). The Pleadings Game: An exercise in Computational Dialectics. Artificial Intelligence and Law 2: 239–292.CrossRefGoogle Scholar
  65. Grasso, F. (1997). Using Dialectical Argumentation for User Modeling In Decision Support Systems. In Jameson A., Paris, C. & Tasso, C. (eds.) User Modeling: Proceedings of the Sixth International Conference, UM97. Springer: Vienna, New York.Google Scholar
  66. Guida, G., Mussio, P. & Zanella, M. (1997). User Interaction in Decision Support Systems: The role of justification. SMC's Conference Proceedings, 3215-3220. Orlando, Florida, October.Google Scholar
  67. Guida, G. & Zanella, M. (1997). Bridging the Gap between Users and complex Decision Support Systems. Proceedings of the 3rd International Conference on Engineering of Complex Computer Systems, 229-238. Como, Italy, September.Google Scholar
  68. Gumpertz, J. J. & Hymes, D. (1972). Directions in Sociolinguistics: The Ethnography of Communication. Holt, Rinehart and Winston.Google Scholar
  69. Hahn, U. (1991). Erklärung als argumentativer Gruppendiskurs. Proceedings of Erklärung im Gespräch-Erklärung im Mensch-Maschine-Dialog. Springer-Verlag.Google Scholar
  70. Hasling, D. W., Clancey, W. J. & Rennels, G. (1984). Strategic Explanations for a Diagnostic Consultation System. International Journal of Man-Machine Studies 20: 3–19.CrossRefGoogle Scholar
  71. Hayes, P. J. & Reddy, D. R. (1983). Steps Toward Graceful Interaction in Spoken and Written Man-Machine Communication. International Journal of Man-Machine Studies 19: 231–284.CrossRefGoogle Scholar
  72. Heider, F. (1946). Attitudes and Cognitive Organization. Journal of Psychology (21): 107-112.Google Scholar
  73. van Heijst, G., van der Spek, R. & Kruizinga, E. (1996). Organizing Corporate Memories. Workshop of the Tenth Banff, Workshop on Knowledge Acquisition for Knowledge-Based Systems, Banff, Canada (http://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.html).Google Scholar
  74. Hermann, J., Kloth, M. & Feldkamp, F. (1998). The Role of Explanations in an Intelligent Assistant System. Artificial Intelligence in Engineering 12: 107–126.CrossRefGoogle Scholar
  75. Hollnagel, E. (1987). Commentary: Issues in Knowledge-based Decision Support. International Journal of Man-Machine Studies 27: 743–751.CrossRefGoogle Scholar
  76. Holsapple, C. W. & Whinston, A. B. (1996). Decision Support Systems: A Knowledge-Based Approach. International Thomson Publishing Company.Google Scholar
  77. Horn, R. E. (ed.) (1998). Can Computers Think? The Debate. MacroVU Press: www.macrovu.com.Google Scholar
  78. Hovland, C. I., Janis, I. L. & Kelley, H. H. (1953). Communication and Persuasion. Yale University Press: New Haven, CT.Google Scholar
  79. Hughes, S. (1986). Question Classification in Rule-Based Systems. Proceedings of Expert Systems 1986.Google Scholar
  80. Hughes, W. (1992). Critical Thinking. Broadview Press: Petersborough, ON.Google Scholar
  81. Jiang, J. J., Muhanna, W. A. & Klein, G. (2000). User Resistance and Strategies for Promoting Acceptance across System Types. Information and Management 37: 25–36.CrossRefGoogle Scholar
  82. Johnson, P. E., Zualkernan, I. A. & Tukey, D. (1993). Types of Expertise: An Invariant of Problem Solving. International Journal of Man Machine Studies 39: 6–41.Google Scholar
  83. Joshi, A. & Webber, B. (1984). Living up to Expectations; Computing Expert Responses. Proceedings of AAAI-84, 169-175. Austin, Texas.Google Scholar
  84. Jung, H., Tambe, M. & Kulkarni, S. (2001). Argumentation as Distributed Constraint Satisfaction: Applications and Results. In Müller, J. P., André, E., Sen, S., & Frasson, C. (eds.) Proceedings of the Fifth International Conference on Autonomous Agents, 324-331. Montreal Canada.Google Scholar
  85. Karlins, M. & Abelson, H. I. (1970). Persuasion: How Opinions and Attitudes are Changed. Springer Verlag: Berlin.Google Scholar
  86. Karsenty, L. & Brézillon, P. J. (1995). Cooperative Problem Solving and Explanation. Expert Systems with Applications 8: 445–462.CrossRefGoogle Scholar
  87. Kasper, G. M. (1996). A Theory of Decision Support System Design for User Calibration. Information Systems Research 7: 215–232.CrossRefGoogle Scholar
  88. Kass, R. (1991). Building a User Model. User Model and User Adapted Interaction 1: 203–258.CrossRefGoogle Scholar
  89. Kay, J. (1993). Reusable Tools for User Modeling. Artificial Intelligence Review 7: 241–225.CrossRefGoogle Scholar
  90. Klein, D. & Finin, T. (1987). What's in a Deep Model? Proceedings of IJCAI-87. Milan, Italy.Google Scholar
  91. Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann.Google Scholar
  92. Kostulski, K. & Trognon, A. (eds.) (1998). Processus de coordination dans les situations de travail collectif. Presses Universitaires de Nancy: Nancy.Google Scholar
  93. Kraus, P., Ambler, S., Elvang-Goransson, M. & Fox, J. (1995). A Logic of Argumentation for Reasoning under Uncertainty. Computational Intelligence 11: 113–131.MathSciNetCrossRefGoogle Scholar
  94. Kraus, S., Sycara, K. & Evenchik, A. (1998). Reaching Agreements Through Argumentation: a Logical Model and Implementation. Artificial Intelligence 104: 1–69.zbMATHMathSciNetCrossRefGoogle Scholar
  95. Kunz, W. & Rittel, H. W. J. (1970). Issues as Elements of Information Systems, Working paper, Center of Planning and Development Research, University of California, Berkeley.Google Scholar
  96. Langlotz, C. P. & Shortliffe, E. H. (1983). Adapting a Consultation System to Critique User Plans. International Journal of Man-Machine Studies 19: 479–496.CrossRefGoogle Scholar
  97. Leake, D. B. (1995). Towards a Goal-Driven Integration of Explanation and Action. In Ram, A. & Leake, D. G. (eds.) Goal-Driven Learning. MIT Press.Google Scholar
  98. Lehman, J. F. & Carbonell, J. G (1989). Learning the User's Language: A Step Towards Automated Creation of User Models. In Kobsa, A. & Wahlster, W. (eds.) User Models in Dialogue Systems. Springer Verlag: Berlin-New York.Google Scholar
  99. Lehnert, W. G. (1978). The Process of Question Answering. Lawrence Erlbaum Associates.Google Scholar
  100. Lemaire, B. (1992). Construction d'explications: Utilisation d'une architecture de tableau noir. Actes des 4èmes Journées Nationales du PRC-GDR-Intelligence Artificielle. Marseille.Google Scholar
  101. Lin, F. & Shoham, Y. (1989). Argument Systems: A Uniform Basis for Nonmonotonic Reasoning. In Proceedings of First International Conference on Knowledge Representation and Reasoning, 245-255. Toronto.Google Scholar
  102. Lodder, A. R. (1997). On Structure and Naturalness in Dialogical Models of Argumentation. In Hage, J. C. et al. (eds.) Legal Knowledge-Based Systems. JURIX: The Eleventh Conference, 45–58. GNI: Nijmegen.Google Scholar
  103. Lodder, A. R. (1998). Procedural Arguments. In Oskamp, A. et al. (eds.) Legal Knowledge-Based Systems. JURIX: The tenth Conference, 21–32. GNI: Nijmegen.Google Scholar
  104. Loui, R. P. (1987). Defeat Among Arguments: A System of Defeasible Inference. Computational Intelligence 3: 157–365.CrossRefGoogle Scholar
  105. Loui, R. P. & Norman, J. (1995). Rationales and Argument Moves. Artificial Intelligence and Law 3: 159–189.CrossRefGoogle Scholar
  106. Loui, R. P., Norman, J., Alteper, J., Pinckard, D., Craven, D., Lindsay, J. & Foltz, M. (1997). Progress on Room 5. A Testbed for Public Interactive Semi-Formal Legal Argumentation. Proceedings of the Sixth International Conference on Artificial Intelligence and Law, 207–214. ACM: New York.CrossRefGoogle Scholar
  107. Mani, I., Conception, K. & Van Guilder, L. (2000). Automated Briefing Production for Lessons Learned Systems. In Proceedings of Intelligent Lessons Learned Systems, a Workshop at AAAI 2000, Austin (Tx), 43-45. American Association of Artificial Intelligence (AAAI).Google Scholar
  108. Marshall, C. C. (1989). Representing the Structure of Legal Argument, In Proceedings of Second International Conference on Artificial Intelligence and Law, 121–127. ACM Press: USA.CrossRefGoogle Scholar
  109. Matthijssen, L. J. (1999). Interfacing between Lawyers and Computers. An Architecture for Knowledge-Based Interfaces to Legal Databases. Kluwer Law International: The Netherlands.Google Scholar
  110. Maybury, M. T. (1993). Planning Multimedia Explanations Using Communicative Acts. Intelligent Multimedia Interfaces. MIT Press.Google Scholar
  111. McKeown, K. R. (1985). Discourse Strategies for Generating Natural-Language Text. Artificial Intelligence 27.Google Scholar
  112. McKeown, K. R. (1988). Generating Goal-Oriented Explanations. International Journal of Expert Systems 1.Google Scholar
  113. McKeown, K. R. (1993). Tailoring Lexical Choice to the User's Vocabulary in Multimedia Explanation Generation. Proceedings of the 31st Annual Meeting of the ACL. Columbus, Ohio.Google Scholar
  114. McTear, M. F. (1993). User Modeling for Adaptive Computer Systems: A Survey of Recent Developments. Artificial Intelligence Review 7: 157–184.CrossRefGoogle Scholar
  115. Mili, F. (1988). A Framework for a Decision Critic and Advisor. Proceedings of the 21st Hawaiian Conference on System Sciences 3: 381–386.Google Scholar
  116. Miller, P. L. (1984). A Critique Approach to Expert Computer Advice: ATTENDING. Pitman.Google Scholar
  117. Mittal, V. O. & Paris, C. L. (1995). Generating Explanations in Context: The System Perspective. Expert Systems with Applications 8: 491–503.CrossRefGoogle Scholar
  118. Moeshler, J. (1985). Argumentation et conversation: Eléments pour une analyse pragmatique du discours. Hatier: Paris.Google Scholar
  119. Mooney, D. J., Carberry, S. & McCoy, K. F. (1991). Capturing High-Level Structure of Naturally Occurring, Extended Explanations Using bottom-up Strategies. Proceedings of the 5th International Language Generation Workshop. Dorson.Google Scholar
  120. Moore, J. D. & Swartout, W. R. (1990). A Reactive Approach to Explanation: Taking the User's Feedback into Account. In Paris, C. L., Swartout, W. R. & Mann, W. C. (eds.) Natural Language Generation in Artificial Intelligence and Computational Linguistics. Kluwer Academic Publishers.Google Scholar
  121. Moran, T. P. & Caroll J. M. (eds.) (1996). Design Rationale: Concepts, Techniques and Use. Lawrence Erlbaum Associates: Hillsdale N.J.Google Scholar
  122. Moulin, B. (1998). An Awareness-Based Model for Agents Involved in Reporting Activities. In Zhang, C. & Lukose, D. (eds.), Multi-Agent Systems, Theories, Languages and Applications, Lecture Notes in Artificial Intelligence 1544, 105–121. Springer Verlag: Berlin.CrossRefGoogle Scholar
  123. Neches, R., Swartout, W. R. & Moore, J. D. (1985). Enhanced Maintenance and Explanation of Expert Systems Through Explicit Models of Their Development. IEEE Transactions on Software Engineering SE-11: 1337–1351.CrossRefGoogle Scholar
  124. O'Keefe, D. J. (1990). Persuasion: Theory and Research. SAGE Publications.Google Scholar
  125. O'Malley, C. (1987). Understanding Explanation. Cognitive Science research Report, n. CRSP 88. University of Sussex (UK).Google Scholar
  126. Papamichail, K. N. (1998). Explaining and Justifying Decision Support Advice in Intuitive Terms. Proceedings of the 13th European Conference on Artificial Intelligence. Brighton, UK, August.Google Scholar
  127. Paris, C. L. (1988). Tailoring Object Descriptions to the User's Level of Expertise. Computational Linguistics 14: 64–78.Google Scholar
  128. Paris, C. L. (1989). The Use of Explicit User Models in a Generation System for Tailoring Answers to the User's Level of Expertise. In Kobsa. A. & Wahlster, W. (eds.) User Models in Dialog Systems. Springer Verlag: Berlin.Google Scholar
  129. Paris, C. L. (1991). The Role of User's Domain Knowledge in Generation. Computational Intelligence 7.Google Scholar
  130. Parnagama P., Burstein, F. & Arnott, D. (1997). Modeling the Personality of Decision Makers for Active Decision Support. In Jameson, A., Paris, C. & Tasso, C. (eds.) User Modeling: Proceedings of the Sixth International Conference, UM97. Springer: Vienna, New York.Google Scholar
  131. Parsons, S., Sierra, C. & Jennings, N. (1998). Agents that Reason and Negotiate by Arguing, Journal of Logic and Computation 8: 261–292.zbMATHMathSciNetCrossRefGoogle Scholar
  132. Perelman, C. & Obrechts-Tyteca, L. (1958). La Nouvelle Rhétorique: Traité de l'Argumentation. Presses Universitaires de France, translated by Wilkenson J. and Weaver P. (1969). The New Rhetoric. University of Notre Dame Press: Notre Dame, Indiana.Google Scholar
  133. Pollack, M. E. (1984). Good Answers to Bad Questions, Goal Inference in Expert Advice-Giving. Proceedings of the Canadian Conference on Artificial Intelligence.Google Scholar
  134. Pollack, M. E. (1986). A Model of Plan Inference that Distinguishes Between the Beliefs of Actors and Observers. Proceedings of the 24th Annual Meeting of the Association for Computational Linguistics. New York, NY.Google Scholar
  135. Pollock, J. L. (1992). How to Reason Defeasibly? Artificial Intelligence 57: 1–42.zbMATHMathSciNetCrossRefGoogle Scholar
  136. Pollock, J. L. (1994). Justification and Defeat. Artificial Intelligence 67: 377–407.zbMATHMathSciNetCrossRefGoogle Scholar
  137. Prakken, H. & Sartor, G. (1997). Argument-Based Extended Logic Programming with Defeasible Priorities. Journal of Applied Non-Classical Logics 7: 25–75.zbMATHMathSciNetGoogle Scholar
  138. Quillici, A. (1991). Arguing over Plans. Proceedings of the AAAI Spring Symposium Series: Argumentation and Belief. Stanford, CA.Google Scholar
  139. Raccah, P-Y. (ed.) (1996). Topoï et gestion des connaissances. Masson: Paris.Google Scholar
  140. Ram, A. (1994). AQUA: Questions that Drive the Explanation Process. In Schank, R. C., Kass, A. & Riesbeck, C. K. (eds.) Case-based Explanation, chapter 7, 207-261. Lawrence Erlbaum Associates.Google Scholar
  141. Resnick, L. B., Salmon, M. H., Wathen, P. & Hollochak, J. B. (1993). Reasoning in Conversation. Cognition and Instruction 11: 347–364. (special issue on Discourse and SharedReasoning).CrossRefGoogle Scholar
  142. Rich, E. A. (1989). Stereotypes and User Modeling. In Kobsa. A. & Wahlster, W. (eds.) User Models in Dialog Systems. Springer Verlag: Berlin.Google Scholar
  143. Ringle, M. H. & Bruce, B. C. (1981). Conversation Failure. In Lehnert, W. G. & Ringle, M. H. (eds.) Knowledge Representation and Natural Language Processing, 203–221. Lawrence Erlbaum Associates: Hillsdale, NJ.Google Scholar
  144. Rissland, E. L. (1983). Examples in Legal Reasoning. Proceedings of the 8th International Joint Conference on Artificial Intelligence. Karlsruhe, Germany.Google Scholar
  145. Rissland et al. (1984). Explaining and Arguing with Examples. Proceedings of AAAI-84, Austin, Texas, 288-294.Google Scholar
  146. Rissland, E., Skalak, D. & Friedman, M. (1993). Bankxx: A Program to Generate Argument Through Case-Based Search. Proceedings of the Fourth International Conference on AI an Law 117-124. Amsterdam, the Netherlands.Google Scholar
  147. Rosenblum, J. A. & Moore, J. D. (1993). Participating in Instructional Dialogues: Finding and Exploring Relevant Prior Explanations. In Brna, P., Ohlsson, S. & Pain, H. (eds.) Proceedings of AI-ED 93: World Conference on Artificial Intelligence and Education, 145-152. Charlottesville, VA.Google Scholar
  148. de Rosis, F., Grasso, F., Berry, D. C. & Gillie, T. (1995). Mediating between Hearer's and Speaker's Views in the Generation of Adaptive Explanations. Expert Systems with Applications 8: 429–443.CrossRefGoogle Scholar
  149. Routley, R. & Meyer, R. (1976). Dialectical Logic, Classical Logic and the Conistency of the World. Studies in Soviet Thought, 16: 1–25.CrossRefGoogle Scholar
  150. Sawamura, H., Umeda, Y. & Meyer, R. K. (2000). Computational Dialectics for Argument-Based Agent Systems. In Proceedings of the Fourth International Conference on Multi-Agent Systems (ICMAS'2000), 271-278. IEEE Computer Society.Google Scholar
  151. Schanck, R. C. (1986). Explanation: A First Pass. In Kolodner, J. L & Riesbeck, C. K. (eds.) Experience, Memory, and Reasoning, 139–165. Lawrence Erlbaum Associates: Hillsdale, NJ.Google Scholar
  152. Schillo,M. & Funk, P. (1999).Who Can You Trust: Dealing with Deception. In Proceedings of the Workshop on Deception, Fraud and Trust in Agent Societies, International Conference on Autonomous Agent, 95-106.Google Scholar
  153. Scott, A. C., Clancey, W. J., Davis, R. & Shortliffe, E. H. (1977). Explanation Capabilities of Knowledge-Based Production Systems. In Buchanan, B. G. & Shortliffe, E. H. (eds.) Rule-Based Expert Systems. Addison Wesley.Google Scholar
  154. Schroeder, M. (1999). An Efficient Argumentation Framework for Negotiating Autonomous Agents, In Proceedings of the 9th European Workshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW'99), 140-149. Valencia, Spain.Google Scholar
  155. Schroeder, M. (2000). Towards a Visualization of Arguing Agents. To appear in Journal of Future Generation Computing Systems. Elsevier. Available at: http://www.soi.city.ac.uk/homes/mschGoogle Scholar
  156. Sherif, M. & Hovland C. I. (1961). Social Judgement. Yale University Press: New Haven, CT.Google Scholar
  157. Shipman, F. M. III & McCall, R. J. (1997). Integrating Different Perspectives on Design Rationale: Supporting the Emergence of Design Rationale from Design Communication. Artificial Intelligence in Engineering Design, Analysis and Manufacturing (AIEDAM) 11: 141–154.CrossRefGoogle Scholar
  158. Shipman, F. M. III & Marshall, C. C. (1999). Formality Considered Harmful: Experiences, Emerging Themes, and Directions on the use of Formal Representations in Interactive Systems. Computer-Supported Cooperative Work 8: 333–352.CrossRefGoogle Scholar
  159. Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley: Reading, MA.Google Scholar
  160. Shortliffe, E. H. (1976). Computer-Based Medical Consultations: MYCIN. Elsevier.Google Scholar
  161. Sillince, J. A. A. (1994). Multi-Agent Conflict Resolution: A Computational Framework for an Intelligent Argumentation Program. Knowledge-Based Systems 7: 75–90.CrossRefGoogle Scholar
  162. Sillince, J. A. A. (1996). Argumentation and Contract Models for Strategic Organization Support Systems, Decision Support Systems 16: 325–326.CrossRefGoogle Scholar
  163. Sillince, J. A. A. & Saeedi, M. H. (1999). Computer-Mediated Communication: Problems and Potential of Argumentation Support Systems. Decision Support Systems 26: 287–306.CrossRefGoogle Scholar
  164. Silverman, B. G. (1992). Survey of Expert Critiquing Systems: Practical and Theoretical Frontiers. Communications of the ACM 35: 106–127.CrossRefGoogle Scholar
  165. Simari, G. R. & Loui, R. P. (1992). A Mathematical Treatment of Defeasible Reasoning and Its Implementation. Artificial Intelligence 53: 125–157.zbMATHMathSciNetCrossRefGoogle Scholar
  166. Slotnick, S. A. & Moore, J. (1995). Explaining Quantitative Systems to Uninitiated Users. Experts Systems with Applications 8: 475–490.CrossRefGoogle Scholar
  167. Smolensky, P., Bell, B., Fox, B., King, R. & Lewis, C. (1987). Constraint-Based Hypertext for Argumentation. In Smith. J. B. & Halasz, F. (eds.) Hypertext'87, 215-245. Association for Computing Machinery.Google Scholar
  168. Southwick, R. W. (1988). Topic Explanation in Expert Systems. In Kelly, B. & Rector, A. (eds.) Research and Development in Expert Systems V. Cambridge University Press.Google Scholar
  169. Southwick, R.W. (1991). Explaining Reasoning: An Overview of Explanation in Knowledge-Based Systems. The Knowledge Engineering Review 6: 1–19.CrossRefGoogle Scholar
  170. Sparck-Jones, K. (1989). Realism about User Modeling. In Kobsa, A. & Wahlster, W. (eds.) User Models in Dialog Systems. Springer Verlag: Berlin.Google Scholar
  171. Stranieri, A., Zeleznikow, J., Gawler,M. & Lewis, B. (1999). A Hybrid Rule-Neural Approach for the Automation of Legal Reasoning in the Discretionary Domain of Family Law in Australia. Artificial Intelligence and Law, 7: 153–183.CrossRefGoogle Scholar
  172. Stranieri, A. & Zeleznikow, J. (1999). A Survey of Argument Structures for Intelligent Decision Support. In proceedings of International Conference ISDSS99, International Society for Decision Support Systems, rcorded on CD-Rom, Monash University, Australia.Google Scholar
  173. Stranieri, A. & Zeleznikow, J. (2000). Copyright Regulation with Argumentation Agents Submitted to Journal of Information and Communication Law.Google Scholar
  174. Suthers, D. D. (1991). Task-Appropriate Hybrid Architectures for Explanation. Computational Intelligence 7.Google Scholar
  175. Swartout, W. R. (1983). XPLAIN: A System for Creating an Explaining Expert Consulting Programs. Artificial Intelligence 21: 285–325.CrossRefGoogle Scholar
  176. Swartout, W. R. & Smoliar, S. W. (1987). On Making Expert Systems More Like Experts. Expert Systems 4: 96–207.CrossRefGoogle Scholar
  177. Swartout, W. R., Paris, C. L. & Moore, J. D. (1991). Design for Explainable Expert Systems. IEEE Expert 6: 58–64.CrossRefGoogle Scholar
  178. Swartout, W. R. & Moore, J. D. (1993). Explanation in Second Generation Expert Systems. In David, J.-M., Krivine, J.-P., & Simmons, R. (eds.) Second Generation Expert Systems. Springer Verlag Publishers.Google Scholar
  179. Sycara, K. P. (1990). Persuasive Argumentation in Negotiation. Theory and Decision 28: 203–242.CrossRefGoogle Scholar
  180. Tanner, M. C. & Keuneke, A. M. (1991). Explanation in Knowledge Systems: The Roles of the Task Structure and Functional Models. IEEE Expert 6: 5–57.CrossRefGoogle Scholar
  181. Tanner, M. C. (1995). Task-Based Explanations. Expert Systems with Applications 8: 502–512.CrossRefGoogle Scholar
  182. Thomas, S. N. (1981). Practical Reasoning in Natural Language, 2nd edn. Prentice-Hall: Englewood Cliffs, NJ.Google Scholar
  183. Thomas, B., Shoham, Y., Schwartz, A. & Kraus, S. (1991). Preliminary Thoughts on an Agent Description Language. International Journal on Intelligent Systems, 6: 497–508.zbMATHCrossRefGoogle Scholar
  184. Toulmin, S. (1958). The Uses of Argument. Cambridge University Press: Cambridge, England.Google Scholar
  185. Toulmin, S., Rieke R. & Janik, A. (1984). An Introduction to Reasoning. MacMillan: New York.Google Scholar
  186. Trenouth, J. & Ford, L. (1990). The User Interface - Computational Models of Computer Users. In McTear M. F. & Anderson T. J. (eds.) Understanding Knowledge Engineering. Ellis Horwood: Chichester.Google Scholar
  187. Trognon, A. & Larrue, J. (1994). Pragmatique du discours politique. Armand Collin: Paris.Google Scholar
  188. Umeda, Y., Yamashita, M., Inagaki, M. & Sawamura, H. (2000). Argumentation as a Social Computing Paradigm. In Proceedings of the Third Pacific Rim International Workshop on Multi-Agent Systems (PRIMA 2000). Springer Verlag Lecture Notes in Artificial Intelligence, 46-60.Google Scholar
  189. Vahidov, R. & Elrod, R. (1999). Incorporating Critique and Argumentation in DSS. Decision Support Systems, vol. 26, 249–258. Elsevier.CrossRefGoogle Scholar
  190. Verheij, B. (1996). Rules, Reasons and Arguments: Formal Studies of Argumentation and Defeat. Ph.D. Thesis, Maastricht University, Maastricht (Netherlands).Google Scholar
  191. Verheij, B. (1998). Argue! An Implemented System for Fomputer-Mediated Defeasible Argumentation. In Proceedings of the Tenth Netherlands/Belgium Conference on Artificial Intelligence, 57-66. CWI: Amsterdam.Google Scholar
  192. Vreeswijk, G. A. W. (1995). IACAS: An Implementation of Chisholm's Principles of Knowledge. Proceedings of the Second Dutch/German Workshop on Nonmonotonic Reasoning, 225-234. Delft University of Technology.Google Scholar
  193. Vreeswijk, G. A.W. (1997). Abstract Argumentation Systems. Artificial Intelligence 90: 225–279.zbMATHMathSciNetCrossRefGoogle Scholar
  194. Walton, D. (1996). Argument Structure: A Pragmatic Theory. University of Toronto Press.Google Scholar
  195. Walton, D. N. & Krabbe, E. C. W. (1995). Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. State Unviersity of New York Press: Albany N.Y.Google Scholar
  196. Wick,M. R. & Thompson,W. B. (1992). Reconstructive Expert System Explanation. Artificial Intelligence 54.Google Scholar
  197. Wick, M. R., Dutta, P., Wineinger, T. & Conner, J. (1995). Reconstructive Explanation: A Case Study in Integral Calculus. Expert Systems with Applications 8: 463–473.CrossRefGoogle Scholar
  198. Wu, D. (1991). Active Acquisition of User Models: Implications for Decision-Theoretic Dialog Planning and Plan Recognition. User Model and User Adapted Interaction 1: 149–172.CrossRefGoogle Scholar
  199. Ye, L. R. (1995). The Value of Explanation in Expert Systems for Auditing: An Experimental Investigation. Expert Systems with Applications 9: 543–556.CrossRefGoogle Scholar
  200. Ye, L. R. & Johnson, P. E. (1995): The Impact of Explanation Facilities on User Acceptance of Expert System Advices. MIS Quarterly (June): Management Information Systems, 157-172.Google Scholar
  201. Yearwood, J. & Stranieri, A. (1999). The Integration of Retrieval, Reasoning and Drafting for Refugee Law: A Third Generation Legal Knowledge Based System. In Proceedings of the Seventh International Conference on Artificial Intelligence and Law: ICAIL'99, 117-137. ACM Press.Google Scholar
  202. Yu, B. & Singh M. P. (2000). A Social Mechanism of Reputation Management in Electronic Communities. In Klusch, M. & Kerschberg, L. (eds.) Cooperative Information Agents IV: The Future of Information Agents in Cyberspace, 154-165. Springer Verlag.Google Scholar
  203. Zanella,M. & Lamperti, G. (1999). Justification Dimensions for Complex Computer Systems. Proceedings of the World Multiconference on Systems, Cybernetics and Informatics, vol. 8, 317–324. Orlando, Florida, June-August.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • B. Moulin
  • H. Irandoust
  • M. Bélanger
  • G. Desbordes

There are no affiliations available

Personalised recommendations