Foundations of Physics

, Volume 32, Issue 4, pp 479–502 | Cite as

Conventions in Relativity Theory and Quantum Mechanics

  • Karl Svozil

Abstract

The conventionalistic aspects of physical world perception are reviewed with an emphasis on the constancy of the speed of light in relativity theory and the irreversibility of measurements in quantum mechanics. An appendix contains a complete proof of Alexandrov's theorem using mainly methods of affine geometry.

conventionality theory of relativity interpretation of quantum theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. W. Bridgman, The Logic of Modern Physics (New York, 1927).Google Scholar
  2. 2.
    P. W. Bridgman, “A physicists second reaction to Mengenlehre,” Scripta Mathematica 2, 101–117, 224–234 (1934). Cf. R. Landauer.(36) Google Scholar
  3. 3.
    P. W. Bridgman, The Nature of Physical Theory (Princeton, 1936).Google Scholar
  4. 4.
    P. W. Bridgman, Reflections of a Physicist (Philosophical Library, New York, 1950).Google Scholar
  5. 5.
    P. W. Bridgman, The Nature of Some of Our Physical Concepts (Philosophical Library, New York, 1952).Google Scholar
  6. 6.
    Arthur I. Miller, Albert Einstein's Special Theory of Relativity (Springer, New York, 1998).Google Scholar
  7. 7.
    Albert Einstein, “Zur Elektrodynamik bewegter Körper,” Ann. Phys. 17, 891–921 (1905). English translation in the Appendix of Ref. 6.Google Scholar
  8. 8.
    D. Malament, “Causal theories of time and the conventionality of simultaniety,” Noûs 11, 293–300 (1977).Google Scholar
  9. 9.
    Michael Redhead, “The conventionality of simultaneity,” in Philosophical Problems of the Internal and External Worlds, J. Earman, A. Janis, G. Massey, and N. Rescher, eds. (University of Pittsburgh Press and Universitätsverlag Konstanz, Pittsburgh and Konstanz, 1993), pp. 103–128.Google Scholar
  10. 10.
    Allen I. Janis, “Conventionality of simultaneity,” in Stanford Encyclopedia of Philosophy. Winter 1998 Edition. (The Metaphysics Research Lab Center for the Study of Language and Information, Ventura Hall Stanford University Stanford, CA 94305-4115, 1998, Internet address: http://plato.stanford.edu/entries/spacetime-convensimul/.)Google Scholar
  11. 11.
    Karl Svozil, “Relativizing relativity,” Found. Phys. 30(7), 1001–1016 (2000); e-print arXiv:quant-ph/0001064.Google Scholar
  12. 12.
    Asher Peres, “Defining length,” Nature 312, 10 (1984).Google Scholar
  13. 13.
    R. J. Boskovich, De spacio et tempore, ut a nobis cognoscuntur (Vienna, 1755); English translation in Ref. 37.Google Scholar
  14. 14.
    George F. FitzGerald, in The Scientific Writings of the Late George Francis FitzGerald, J. Larmor, ed. (Dublin, 1902).Google Scholar
  15. 15.
    John S. Bell, “How to teach special relativity,” Progress in Scientific Culture 1(2) (1976). Reprinted in Ref. 38, pp. 67–80.Google Scholar
  16. 16.
    John S. Bell, “George Francis FitzGerald,” Physics World 5(9), 31–35, September 1992; abridged version by Denis Weaire.Google Scholar
  17. 17.
    A. D. Alexandrov, “On Lorentz transformations,” Uspehi Mat. Nauk. 5(3), 187 (1950).Google Scholar
  18. 18.
    A. D. Alexandrov, “A contribution to chronogeometry,” Can. J. Math. 19, 1119–1128 (1967).Google Scholar
  19. 19.
    A. D. Alexandrov, “Mappings of spaces with families of cones and space-time transformations,” Annali die Matematica Pura ed Applicata 103, 229–257 (1967).Google Scholar
  20. 20.
    A. D. Alexandrov, “On the principles of relativity theory,” in Classics of Soviet Mathemotics, Volume 4, A. D. Alexandrov. Selected Works, pp. 289–318 (1996).Google Scholar
  21. 21.
    H. J. Borchers and G. C. Hegerfeldt, “The structure of space-time transformations,” Comm. Math. Phys. 28, 259–266 (1972).Google Scholar
  22. 22.
    Walter Benz, Geometrische Transformationen (BI Wissenschaftsverlag, Mannheim, 1992).Google Scholar
  23. 23.
    June A. Lester, “Distance preserving transformations,” in Handbook of Incidence Geometry, Francis Buekenhout, ed. (Elsevier, Amsterdam, 1995).Google Scholar
  24. 24.
    Karl Svozil, “Connections between deviations from Lorentz transformation and relativistic energy-momentum relation,” Europhysics Lett. 2, 83–85 (1986), excerpts from Ref. 39.Google Scholar
  25. 25.
    Karl Svozil, “Operational perception of space-time coordinates in a quantum medium,” Nuovo Cimento 96B, 127–139 (1986).Google Scholar
  26. 26.
    Karl Svozil, “Quantum interfaces,” in Sciences of the Interface (Genista Verlag, Tübingen, Germany, 2001) pp. 76–88; e-print arXiv:quant-ph/0001064.Google Scholar
  27. 27.
    Daniel B. Greenberger and A. YaSin, “‘Haunted’ measurements in quantum theory,” Found. Phys. 19(6), 679–704 ( 1989).Google Scholar
  28. 28.
    Daniel M. Greenberger, Solar Eclipse Workshop, Vienna, August 1999.Google Scholar
  29. 29.
    Thomas J. Herzog, Paul G. Kwiat, Harald Weinfurter, and Anton Zeilinger, “Complementarity and the quantum eraser,” Phys. Rev. Lett., 75(17), 3034–3037 (1995).Google Scholar
  30. 30.
    Niko Donath and Karl Svozil, “Finding a state in a haystack,” arXiv:quant-ph/ 0105046 (2001).Google Scholar
  31. 31.
    Erwin Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935). English translation in Refs. 40 and 41, pp. 152–167; a copy can be found at www.emr.hibu.no/lars/eng/cat/.Google Scholar
  32. 32.
    Josef Gruska, Quantum Computing (McGraw-Hill, London, 1999).Google Scholar
  33. 33.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).Google Scholar
  34. 34.
    K. W. Gruenberg and A. J. Weir, Linear Geometry, 2nd edn. (Springer, New York, 1977).Google Scholar
  35. 35.
    Hans Havlicek, private communication.Google Scholar
  36. 36.
    Rolf Landauer, “Advertisement for a paper I like,” in On Limits, John L. Casti and J. F. Traub, eds. (Santa Fe Institute Report 94-10-056, Santa Fe, NM, 1994), p. 39.Google Scholar
  37. 37.
    R. J. Boskovich, “De spacio et tempore, ut a nobis cognoscuntur,” in A Theory of Natural Philosophy, J. M. Child, ed. (Open Court (1922) and MIT Press, Cambridge, MA, 1966), pp. 203–205.Google Scholar
  38. 38.
    John S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
  39. 39.
    Karl Svozil, “On the setting of scales for space and time in arbitrary quantized media,” Lawrence Berkeley Laboratory preprint, LBL-16097, May 1983.Google Scholar
  40. 40.
    J. D. Trimmer, “The present situation in quantum mechanics: a translation of Schrödinger's “cat paradox,” Proc. Am. Phil. Soc. 124, 323–338 (1980); reprinted in Ref. 41, pp. 152–167.Google Scholar
  41. 41.
    John A. Wheeler and Wojciech H. Zurek, Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Karl Svozil
    • 1
  1. 1.Institut für Theoretische PhysikUniversity of Technology ViennaViennaAustria

Personalised recommendations