Journal of Neurocytology

, Volume 30, Issue 5, pp 413–425 | Cite as

Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy

  • George D. Pappas
  • Virginia Kriho
  • Christine Pesold


Reelin is a glycoprotein (∼400 kDa) secreted by GABAergic neurons into the extracellular matrix of the neocortex and hippocampus as well as other areas of adult rodent and nonhuman primate brains. Recent findings indicate that the heterozygote reeler mouse (haploinsufficient for the reeler gene) shares several neurochemical and behavioral abnormalities with schizophrenia and bipolar disorder with mania. These include (1) a downregulation of both reelin mRNA and the translated proteins, (2) a decrease in the number of dendritic spines in cortical and hippocampal neurons, (3) a concomitant increase in the packing density of cortical pyramidal neurons, and (4) an age-dependent decrease in prepulse inhibition of startle. Interestingly, the heterozygous reeler mouse does not exhibit the unstable gait or the neuroanatomy characteristic of the null mutant reeler mouse. Immunocytochemical studies of the expression of reelin in mice have been primarily limited to light microscopy. In this study we present new immunoelectron microscopy data that delineates the subcellular localization of reelin in the cortex and hippocampus of the wild-type mouse, and compares these results to reelin expression in the heterozygous reeler mouse. In discontinuous areas of cortical layers I and II and the inner blade area of the dentate gyrus of the wild type mouse, extracellular reelin is associated with dendrites and dendritic spine postsynaptic specializations. Similar associations have been detected in the CA1 stratum oriens and other areas of the hippocampus. In the hippocampus, reelin expression is more expansive and more widespread than in cortical layers I and II. In contrast, extracellular reelin immunoreactivity is greatly diminished in all areas examined in the heterozygous reeler mouse. However, some cell bodies of GABAergic neurons in the cortex and hippocampus demonstrate an increased accumulation of reelin in the Golgi and endoplasmic reticulum. We suggest that in the heterozygous reeler mouse a downregulation of reelin biosynthesis results in a decreased rate of secretion into the extracellular space. This inhibits dendritic spine maturation and plasticity and leads to dissociation of dendritic postsynaptic density integrity and atrophy of spines. We speculate that the haploinsufficient reeler mouse may provide a model for future studies of the role of reelin, as it may be related to psychosis vulnerability.


Dendritic Spine GABAergic Neuron Immunoelectron Microscopy Stratum Oriens Cortical Pyramidal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E., Jr. & Jones, E. G. (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of General Psychiatry 52, 258–266.Google Scholar
  2. Anton, E. S., Kreidberg, J. A. & Rakic, P. (1999) Distinct functions of α3 and α(V) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22, 277–289.Google Scholar
  3. Benes, F. M. & Berretta, S. (2001) GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27.Google Scholar
  4. Benson, D. L., Schnapp, L. M., Shapiro, L. & Guntley, G. W. (2000) Making memories stick: Cell-adhesion molecules in synaptic plasticity. Trends in Cell Biology 10, 473–482.Google Scholar
  5. Carboni, G., Dong, E., Pesold, C., Tueting, P., Li, X., Costa, E. & Guidotti, A. (2000) Heterozygous reeler mice (rl+ /-) display increased cognitive impairment when treated with dizolcipine. Society for Neuroscience Abstracts 26, 1058.Google Scholar
  6. Chang, H. P., Ma, Y. L., Wan, F. J., Tsai, L. Y., Lindberg, F. P. & Lee, E. H. Y. (2001) Functional blocking of integrin-associated protein impairs memory retention and decreases glutamate release from the hippocampus. Neuroscience 102, 289–296.Google Scholar
  7. Chavis, P. & Westbrook, G. (2001) Integrins mediate functional pre-and postsynaptic maturation at a hippocampal synapse. Nature 411, 317–321.Google Scholar
  8. Chung, S.-H. (1977) Synapticmemoryin the hippocampus. Nature 266, 677–678.Google Scholar
  9. Costa, E., Davis, J., Grayson, D. R., Guidotti, A., Pappas, G. D. & Pesold, C. (2001) Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiology of Disease 8, 723–742.Google Scholar
  10. Crino, P. & Eberwine, J. (1996) Molecular characterization of the dendritic growth cone: Regulated mRNA transport and local protein synthesis. Neuron 17, 1173–1187.Google Scholar
  11. Curran, T. & D'Arcangelo, G. (1998) Role of reelin in the control of brain development. Brain Research Reviews 26, 285–294.Google Scholar
  12. D'Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I. & Curran, T. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723.Google Scholar
  13. D'Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K. & Curran, T. (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. Journal of Neuroscience 17, 23–31.Google Scholar
  14. Debergeyck, V., Naerhuyzen, B., Goffinet, A. M. & Lambert de Rouvroit, C. (1997) A panel of monoclonal antibodies against reelin, the extracellular matrix protein defective in reeler mutant mice. Journal of Neuroscience Methods 82, 17–24.Google Scholar
  15. Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A. & Anton, E. S. (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27, 33–44.Google Scholar
  16. Fatemi, S. H. (2001) Reelin mutations in mouse and man: From reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Molecular Psychiatry 6, 150–159.Google Scholar
  17. Fatemi, S. H., Earle, J. A. & McMenomy, T. (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Molecular Psychiatry 5, 654–663.Google Scholar
  18. Frotscher, M. (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Current Opinion in Neurobiology 8, 570–575.Google Scholar
  19. Garey, L. J., Ong, W. Y., Patel, T. S., Kanani, M., Davis, A., Mortimer, A. M., Barnes, T. R. & Hirsch, S. R. (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. Journal of Neurological and Neurosurgical Psychiatry 65, 446–453.Google Scholar
  20. Glantz, L. A. & Lewis, D. A. (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry 57, 65–73.Google Scholar
  21. Guidotti, A., Auta, J., Davis, J. M., Digiorgigerevini, V., Dwivedi, Y., Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D. & Costa, E. (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. Archives of General Psychiatry 57, 1061–1069.Google Scholar
  22. Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. A. (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neuroscience 2, 1120–1124.Google Scholar
  23. Harris, K. M. (1999) Structure, development, and plasticity of dendritic spines. Current Opinion in Neurobiology 9, 343–348.Google Scholar
  24. Humphries, M. J. (1996) Integrin activation: The link between ligand binding and signal transduction. Current Opinion in Cell Biology 8, 632–640.Google Scholar
  25. Impagnatiello, F., Guidotti, A., Pesold, C., Dwivedi, Y., Caruncho, H. J., Pisu, M. G., Uzunov, D. P., Smalheiser, N. R., Davis, J. M., Pandey, G. N., Karper, L. P., Freeman, G. K., Grillon, C., Morgan, C. A. IIIRD, Charney, D. S. & Krystal, J. H. (1996) Preliminary evidence of an association between sensorimotor gating and distractibility in psychosis. Journal of Neuropsychiatry and Clinical Neuroscience 8, 60–66.Google Scholar
  26. Lacor, P. N., Grayson, D. R., Auta, J., Sugaya, I., Costa, E. & Guidotti, A. (2000) Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proceedings of the National Academy of Science USA 97, 3556–3561.Google Scholar
  27. Leranth, C. & Pickel, V. M. (1989) Electron microscopic pre-embedding double immunostaining methods. In Tract-Tracing Methods 2: Recent Progress (edited by Heimer, L. & Zaborsky, L.) pp. 129–172. New York: Plenum Press.Google Scholar
  28. Lewis, D. A. (1997) Development of the prefrontal cortex during adolescence: Insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16, 385–398.Google Scholar
  29. Light, G. A. & Braff, D. L. (1999) Human and animal studies of schizophrenia-related gating deficits. Current Psychiatry Reports 1, 31–40.Google Scholar
  30. Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., Larson, J., Condie, B. G., Guidotti, A. & Costa, E. (2001) Downregulation of dendritic spine and glutamic acid decarboxylase67 expression in the reelin haploinsufficient heterozygous reeler mouse. Proceedings of the National Academy of Science USA 98, 3477–3482.Google Scholar
  31. Lussier, I. & Stip, E. (2001) Memory and attention deficits in drug naïve patients with schizophrenia. Schizophrenia Research 48, 45–55.Google Scholar
  32. Lyford, G. L., Yamagata, K. Y., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland N. G., Gilbert, D. J., Jenkins, N. A., Lanahan, A. A. & Worley, P. F. (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 443–445.Google Scholar
  33. McCarley, R. W., Wible, C. G., Frumin, M., Hirayasu, Y., Levitt, J. J., Fischer, I. A. & Shenton, M. E. (1999) MRI anatomy of schizophrenia. Biological Psychiatry 45, 1099–1119.Google Scholar
  34. Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H. & Mikoshiba, K. (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912.Google Scholar
  35. Pearlson, G. D. (2000) Neurobiology of schizophrenia. Annals of Neurology 48, 556–566.Google Scholar
  36. Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A. & Caruncho, H. J. (1998a) Reelin is preferentially expressed in neurons synthesizing γ-aminobutyric acid in cortex and hippocampus of adult rats. Proceedings of the National Academy of Science USA 95, 3221–3226.Google Scholar
  37. Pesold, C., Liu, W. S., Guidotti, A., Costa, E. & Caruncho, H. J. (1999) Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. Proceedings of the National Academy of Science USA 96, 3217–3222.Google Scholar
  38. Pesold, C., Pisu, M. G., Impagnatiello, F., Uzunov, D. P. & Caruncho, H. J. (1998b) Simultaneous detection of glutamic acid decarboxylase and reelin mRNA in adult rat neurons using in situ hybridization and immunofluorescence. Brain Research Protocols 3, 155–160.Google Scholar
  39. Rakic, P. & Caviness, V. S. (1995) Cortical development: View from neurological mutants two decades later. Neuron 14, 1101–1104.Google Scholar
  40. Rall, W. (1999) An historical perspective on modeling dendrites. In Dendrites (edited by Stuart, G., Spruston, N. & Hausser, M.) pp. 193–203. Oxford, UK: Oxford University Press.Google Scholar
  41. Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17, 208–212.Google Scholar
  42. Rice, D. S. & Curran, T. (1999) Mutant mice with scrambled brains: Understanding the signaling pathways that control cell positioning in the CNS. Genes in Development 13, 2758–2773.Google Scholar
  43. Rodriguez, M. A., Pesold, C., Liu, W. S., Kriho, V., Guidotti, A. & Pappas, G. D. (2000) Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proceedings of the National Academy of Science USA 97, 3550–3555.Google Scholar
  44. Rohrbough, J., Grotewiel, M. S., Davis, R. L. & Broadie, K. (2000) Integrin-mediated regulation synaptic morphology, transmission and plasticity. Journal of Neuroscience 20, 6868–6878.Google Scholar
  45. Rosoklija, G., Toomayan, G., Ellis, S. P., Keilp, J., Mann, J. J., Latov, N., Hays, A. P. & Dwork, A. J. (2000) Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: Preliminary findings. Archives of General Psychiatry 57, 349–356.Google Scholar
  46. Royaux, I., Lambert de Rouvroit, C., D'Arcangelo, G., Demirov, D. & Goffinet, A. M. (1997) Genomic organization of the mouse reelin gene. Genomics 46, 240–250.Google Scholar
  47. Rugarli, E. I. & Ballabio, A. (1995) Reelin: Anovel extracellular matrix protein involved in brain lamination. BioEssays 17, 832–834.Google Scholar
  48. Saijo, T., Abe, T., Someya, Y., Sassa, T., Sudo, Y., Suhara, T., Shuno, T., Asai, K. & Okubo, Y. (2001) Ten year progressive ventricular enlargement in schizophrenia:An MRI morphometrical study. Psychiatry and Clinical Neurosciences 55, 41–47.Google Scholar
  49. Segev, I., Stuart, G. & Hausser, M. (1999) A theoretical view of passive and active dendrites. In Dendrites (edited by Stuart, G., Spruston, N. & Hausser, M.) pp. 205–226. Oxford, UK: Oxford University Press.Google Scholar
  50. Selemon, L. D. & Goldman-Rakic, P. S. (1999) The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biological Psychiatry 45, 17–25.Google Scholar
  51. Steward, O., Wallace, S. C., Lyford, G. L. & Worley, P. F. (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 41–751.Google Scholar
  52. Swanson, L. W., Teyler, T. J. & Thompson, R. F. (1982) Hippocampal long-term potentiation: Mechanisms and implications for memory. Neuroscience Research Program Bulletin 20, 613–769.Google Scholar
  53. Tsuang, M. T., Stone, W. S. & Faraone, S. V. (2001) Genes, environment and schizophrenia. British Journal of Psychiatry Supplement 40, s18–24.Google Scholar
  54. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R. & Pesold, C. (1999) The phenotypic characteristics of heterozygous reeler mouse. NeuroReport 10, 1329–1334.Google Scholar
  55. Utsunomiya-Tate, N., Kubo, K., Tate, S., Kainosho, M., Katayama, E., Nakajima, K. & Mikoshiba, K. (2000) Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proceedings of the National Academy of Science USA 97, 9729–9734.Google Scholar
  56. Volk, D. W., Austin, M. C., Pierri, M. N., Sampson, A. R. & Lewis, D. A. (2000) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of General Psychiatry 52, 258–266.Google Scholar
  57. Weiler, I. J., Wang, X. & Greenough, W. T. (1994) Synapse-activated protein synthesis as a possible mechanism of plastic neural change. Progress in Brain Research 100, 189–194.Google Scholar
  58. Wells, D. G., Richter, J. D. & Fallon, J. R. (2000) Molecular mechanisms for activity-regulated protein synthesis in synapto-dendritic compartment. Current Opinion in Neurobiology 10, 132–137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • George D. Pappas
    • 1
    • 2
  • Virginia Kriho
    • 1
  • Christine Pesold
    • 1
    • 2
  1. 1.Psychiatric Institute, Department of PsychiatryUSA
  2. 2.Department of Anatomy and Cell Biology, College of MedicineUniversity of ILChicagoUSA

Personalised recommendations