Journal of Philosophical Logic

, Volume 31, Issue 1, pp 77–98

Measuring Inconsistency

  • Kevin Knight


I provide a method of measuring the inconsistency of a set of sentences – from 1-consistency, corresponding to complete consistency, to 0-consistency, corresponding to the explicit presence of a contradiction. Using this notion to analyze the lottery paradox, one can see that the set of sentences capturing the paradox has a high degree of consistency (assuming, of course, a sufficiently large lottery). The measure of consistency, however, is not limited to paradoxes. I also provide results for general sets of sentences.

inconsistency paraconsistency probability η-consistency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bland, R. G.: New finite pivoting methods for the simplex method, Math. Oper. Res. 2 (1977), 103-107.Google Scholar
  2. 2.
    Brown, B.: Yes, Virginia, there really are paraconsistent logics, J. Philos. Logic 28 (1999), 489-500.Google Scholar
  3. 3.
    Brown, B.: Simple natural deduction for weakly aggregative paraconsistent logics, in D. Batens, C. Mortensen, G. Priest, and J.-P. van Bendegem (eds.), Frontiers of Paraconsistent Logic, Studies in Logic and Computation 8, Research Studies Press, Baldock, 2000, pp. 137-148.Google Scholar
  4. 4.
    Dantzig, G. B.: Linear Programming and Extensions, Princeton University Press, Princeton, 1963.Google Scholar
  5. 5.
    Dantzig, G. B. and Thapa, M. N.: Linear Programming, Springer, New York, 1997.Google Scholar
  6. 6.
    Kincaid, D. R. and Cheney, E. W.: Numerical Analysis: Mathematics of Scientific Computing, 2nd edn, Brooks/Cole, Pacific Grove, 1996.Google Scholar
  7. 7.
    Kripke, S.: A puzzle about belief, in A. Margalit (ed.), Meaning and Use, D. Reidel, Dordrecht, 1976, pp. 239-283.Google Scholar
  8. 8.
    Leblanc, H.: Alternatives to standard first-order semantics, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. I, D. Reidel, Dordrecht, 1981, pp. 189-274.Google Scholar
  9. 9.
    Miller, D.: Popper's qualitative theory of verisimilitude, British J. Philos. Sci. 25 (1974), 166-177.Google Scholar
  10. 10.
    Paris, J. B.: The Uncertain Reasoner's Companion: A Mathematical Perspective, Cambridge Tracts in Theoret. Comput. Sci. 39, Cambridge University Press, Cambridge, 1994.Google Scholar
  11. 11.
    Paris, J. B. and Vencovská, A.: Proof systems for probabilistic uncertain reasoning, J. Symbolic Logic 63(3) (1998), 1007-1039.Google Scholar
  12. 12.
    Rescher, N. and Manor, R.: On inference from inconsistent premisses, Theory and Decision 1 (1970), 179-217.Google Scholar
  13. 13.
    Schotch, P. and Jennings, R.: On detonating, in G. Priest, R. Routley, and J. Norman (eds.), Paraconsistent Logic: Essays on the Inconsistent, Philosophia Verlag, München, 1989, pp. 306-327.Google Scholar
  14. 14.
    Sorensen, R.: Blindspots, Claredon Press, Oxford, 1988.Google Scholar
  15. 15.
    Suppes, P.: Probabilistic inference and the concept of total evidence, in J. Hintikka and P. Suppes (eds.), Aspects of Inductive Logic, North-Holland, Amsterdam, 1966, pp. 49-65.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Kevin Knight
    • 1
  1. 1.Department of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations