Journal of Computational Neuroscience

, Volume 12, Issue 1, pp 27–38 | Cite as

An Estimator for the Electrotonic Size of Neurons Independent of Charge Equalization Time Constants

  • Armantas Baginskas
  • Morten Raastad
Article

Abstract

Electrotonic properties are important aspects of neuronal function but have been difficult to estimate without accurate morphological reconstruction. The complexity of the branching dendritic cables often gives charging curves composed of a very large number of exponential functions, making it difficult to distinguish the time constants that are needed for electrotonic estimates. We describe an estimator P for the electrotonic size of neurons based on simple measures from voltage and current clamp recordings that does not rely on the higher rank exponential components of the response. Our estimator gives a bounded scale for the electrotonic size of the cell and can be used for categorization and comparison when morphology is not available.

neuron passive properties membrane capacitance electrotonic length lambda voltage attenuation current integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali-Hassan WA, Saidel GM, Durand D (1992) Estimation of electrotonic parameters of neurons using an inverse Fourier transform technique. IEE Trans. Biomed. Eng. 39(5): 493–501.Google Scholar
  2. Baginskas A, Gutman A, Hounsgaard J, Svirskiene N, Svirskis G (1999) Semi-quantitative theory of bistable dendrites with windup. In: R Poznanski, ed. Mathematical Modeling in the Neurosciences. Harwood Academic, Berks, UK. pp. 417–441.Google Scholar
  3. Bekkers JM, Stevens CF (1996) Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. J. Neurophysiol. 75: 1250–1255.Google Scholar
  4. Bloomfield SA, Hamos JE, Sherman SM (1987) Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. J. Physiol. (Lond.) 383: 653–692.Google Scholar
  5. Carnevale NT, Lebeda FJ (1987) Numerical analysis of electrotonus in multicompartment neuron models. J. Neurosci. Meth. 19: 69–87.Google Scholar
  6. Carnevale NT, Tsai KY, Clairborne BJ, Brown TH (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J. Neurophysiol. 78: 703–720.Google Scholar
  7. Clements JD, Redman SJ (1989) Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J. Physiol. (Lond.) 409: 63–87.Google Scholar
  8. Durand D (1984) The somatic shunt cable model for neurons. Biophys. J. 46: 645–653.Google Scholar
  9. Durand D, Carlen PL, Gurevich N, Ho A, Kunov H (1983) Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining. J. Neurophysiol. 50: 1080–1097.Google Scholar
  10. Gutman AM (1991) Bistability of dendrites. Intl. J. Neural Sys. 1(4): 291–304.Google Scholar
  11. Hines M (1989) A program for simulation of nerve equations with branching geometries. Intl. J. Biomed. Computing 24: 55–68.Google Scholar
  12. Holmes WR, Rall W (1992) Estimating the electrotonic structure of neurons with compartment models. J. Neurophysiol. 68: 1438–1452.Google Scholar
  13. Holmes WR, Segev I, Rall W (1992) Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures. J. Neurophysiol. 68: 1401–1420.Google Scholar
  14. Iansek R, Redman S (1973) An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. J. Physiol. (Lond.) 234: 613–636.Google Scholar
  15. Jackson MB (1992) Cable analysis with the whole-cell patch clamp: Theory and experiment. Biophys. J. 61: 756–766.Google Scholar
  16. Kim HGB, Connors W (1993) A pical dendrites of the neocortex: Correlation between sodium-and calcium-dependent spiking and pyramidal cell morphology. J. Neursosci. 13: 5301–5311.Google Scholar
  17. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.) 305: 197–213.Google Scholar
  18. London M, Meunier C, Segev I (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J. Neurosci. 19: 8219–8233.Google Scholar
  19. Lux HD, Schubert P, Kreutzberg GW (1970) Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In: P Andersen, JKS Jansen, eds. Excitatory synaptic mechanisms. Universitetsforlaget, Oslo.Google Scholar
  20. Mainen ZF, Carnevale NT, Zador AM, Claiborne BJ, Brown TH (1996) Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J. Neurophysiol. 76: 1904–1923.Google Scholar
  21. Major G, Larkman AU, Jonas P, Sakmann B, Jack JJB (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci. 14: 4613–4638.Google Scholar
  22. Poznanski RR (1994) CA3 hippocampal pyramidal neurons. Neurosci. Res. Comm. 14(2): 93–100.Google Scholar
  23. Poznanski RR (1996) Transient response in a tapering cable model with somatic shunt. NeuroReport 7: 1700–1704.Google Scholar
  24. Perkel DH, Mulloney B, Budelli RW (1981) Quantitative methods for predicting neuronal behavior. Neuroscience 6: 823–837.Google Scholar
  25. Rall W(1959) Branching dendritic trees and motoneuron membrane resistivity. Expl. Neurol. 1: 491–527.Google Scholar
  26. Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9: 1483–1508.Google Scholar
  27. Rall W (1977) Core conductor theory and cable properties of neurons. In: Handbook of Physiology: The Nervous System. American Physiology Society, Bethesda, MD. vol. I, pp. 39–97.Google Scholar
  28. Rall W, Burke RE, Holmes WR, Jack JJB, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol. Rev. 72 (Suppl.): S159–S186.Google Scholar
  29. Stuart GJ, Dodt HU, Sakmann B(1993) Patch-clamp recordings from the soma and dendrites of neurones in brain slices using infrared video microscopy. Pfluegers Arch. 423: 511–518.Google Scholar
  30. Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18: 3501–3510.Google Scholar
  31. Svirskis G, Baginskas A, Hounsgaard J, Gutman A (1997a) Electrotonic measurements by electric field-induced polarization in neurons: Theory and experimental estimation. Biophys. J. 73: 3004–3015.Google Scholar
  32. Svirskis G, Gutman A, Hounsgaard J (1997b) Detection of a membrane shunt by DC field polarization during intracellular and whole cell recordings. J. Neurophysiol. 77: 579–586.Google Scholar
  33. Thurbon D, Luscher HR, Hofstetter T, Redman SJ (1998) Passive electrical properties of ventral horn neurons in rat spinal cord slices. J. Neurophysiol. 79: 2485–2502.Google Scholar
  34. Turner DA (1984) Segmental cable evaluation of somatic transients in hippocampal neurons (CA1, CA3, and dentate). Biophys. J. 46: 73–84.Google Scholar
  35. Turner DA, Schwarzkroin PA (1983) Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurons. J. Neurosci. 3: 2381–2394.Google Scholar
  36. Wong RKS, Prince DA, Basbaum AJ (1979) Intradendritic recordings from hippocampal neurons. Proc. Natl. Acad. Sci. USA 76: 986–990.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Armantas Baginskas
    • 1
  • Morten Raastad
    • 2
  1. 1.Institute for Biomedical Research, Laboratory of NeurophysiologyKaunas University of MedicineKaunasLithuania
  2. 2.University of OsloInstitute for Basic Medical Sciences, Section of NeurophysiologyOsloNorway

Personalised recommendations