Journal of Biomolecular NMR

, Volume 22, Issue 3, pp 225–247 | Cite as

Towards high-resolution solid-state NMR on large uniformly 15N- and [13C,15N]-labeled membrane proteins in oriented lipid bilayers

  • Thomas Vosegaard
  • Niels Chr. Nielsen


Based on exact numerical simulations, taking into account isotropic and conformation-dependent anisotropic nuclear spin interactions, we systematically analyse the prospects for high-resolution solid-state NMR on large isotope-labeled membrane proteins macroscopically oriented in phospholipid bilayers. Using the known X-ray structures of rhodopsin and porin as models for large membrane proteins with typical α-helical and β-barrel structural motifs, the analysis considers all possible one- to six-dimensional spectra comprised of frequency dimensions with evolution under any combination of amide 1H, amide 15N, and carbonyl 13C chemical shifts as well as 1H-15N dipole-dipole couplings. Under consideration of typical nuclear spin interaction and experimental line-shape parameters, the analysis provides new insight into the resolution capability and orientation-dependent transfer efficiency of existing experiments as well as guidelines as to improved experimental approaches for the study of large uniformly 15N- and [13C,15N]-labeled membrane proteins. On basis of these results and numerical optimizations of coherence-transfer efficiencies, we propose several new high-resolution experiments for sequential protein backbone assignment and structure determination.

macroscopic orientation membrane proteins porin rhodopsin solid-state NMR uniform isotope labeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleyard, A.N., Herbert, R.B., Henderson, P.J.F., Watts, A. and Spooner, P.J.R. (2000) Biochim. Biophys. Acta, 1509, 55–64.Google Scholar
  2. Arkin, I.T., Brünger, A.T. and Engelman, D.M. (1998) Proteins, 28, 465–466.Google Scholar
  3. Bak, M., Rasmussen, J.T. and Nielsen, N.C. (2000) J. Magn. Reson., 147, 296–330. Internet address: Scholar
  4. Bak, M., Schultz, R. and Nielsen, N.C. (2001a) In Perspectives on Solid State NMR in Biology, Kiihne, S.R. and de Groot, H.J.M. (Eds.), Kluwer Academic Publishers, Dordrecht, pp. 95–109.Google Scholar
  5. Bak, M., Bywater, R.P., Hohwy, M., Thomsen, J.K., Adelhorst, K., Jakobsen, H.J., Sørensen, O.W. and Nielsen, N.C. (2001b) Biophys. J., 81, 1684–1698.Google Scholar
  6. Bak, M., Schultz, R., Vosegaard, T. and Nielsen, N.C. (2002) J. Magn. Reson., 154, 28–45. Internet address: Scholar
  7. Baldus, M. and Meier, B.H. (1996) J. Magn. Reson., A121, 65–69.Google Scholar
  8. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meier Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535–542. Internet address: Scholar
  9. Bowie, J.U. (1997) J. Mol. Biol., 272, 627–636.Google Scholar
  10. Bywater, R.P., Thomas, D. and Vriend, G. (2001) J. Comput. Aided Mol. Des., 15, 533–552.Google Scholar
  11. Cavanagh, J., Fairbrother, W.J., Parmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego, CA.Google Scholar
  12. Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289–302.Google Scholar
  13. Cross, T.A. and Quine, J.R. (2000) Concepts Magn. Reson., 12, 55–70.Google Scholar
  14. deAzevedo, E.R., Bonagamba, T.J. and Schmidt-Rohr, K. (2000) J. Magn. Reson., 142, 86–96.Google Scholar
  15. Detken, A., Hardy, E.H., Ernst, M., Kainosho, M., Kawakami, T., Aimoto, S. and Meier, B.H. (2001) J. Biomol. NMR, 20, 203–221.Google Scholar
  16. Egorova-Zachernyuk, T.A., Hollander, J., Fraser, N., Gast, P., Hoff, A.J., Cogdell, R., de Groot, H.J.M. and Baldus, M. (2000) J. Biomol. NMR, 19, 243–253.Google Scholar
  17. Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford.Google Scholar
  18. Fu, R., Cotten, M. and Cross, T.A. (2000) J. Biomol. NMR, 16, 261–268.Google Scholar
  19. Griffin, R.G. (1998) Nat. Struct. Biol., 5, 508–512.Google Scholar
  20. Gu, Z.T. and Opella, S.J. (1999a) J. Magn. Reson., 138, 193–198.Google Scholar
  21. Gu, Z.T. and Opella, S.J. (1999b) J. Magn. Reson., 140, 340–346.Google Scholar
  22. Hong, M. (1999) J. Biomol. NMR, 15, 1–14.Google Scholar
  23. Ishii, Y. and Tycko, R. (2000) J. Am. Chem. Soc., 122, 1443–1455.Google Scholar
  24. James, F. and Ross, M. (1975) Comput. Phys. Commun., 10, 343–367. Internet address: Scholar
  25. Ketchem, R.R. and Cross, T.A. (1993) Science, 261, 1457–1460.Google Scholar
  26. Kovacs, F.A., Denny, J.K., Song, Z., Quine, J.R. and Cross, T.A. (2000) J. Mol. Biol., 295, 117–125.Google Scholar
  27. Luca, S., Filippov, D.V., van Boom, J.H., Oschkinat, H., de Groot, H.J.M. and Baldus, M. (2001) J. Biomol. NMR, 20, 325–331.Google Scholar
  28. Marassi, F.M. (2001) Biophys. J., 80, 994–1003.Google Scholar
  29. Marassi, F.M. and Opella, S.J. (2000) J. Magn. Reson., 144, 150–155.Google Scholar
  30. Marassi, F.M., Gesell, J.J., Valente, A.P., Kim, Y., Oblatt-Montal, M., Montal, M. and Opella, S.J. (1999) J. Biomol. NMR, 14, 141–148.Google Scholar
  31. Marassi, F.M., Ma, C., Gesell, J.J. and Opella, S.J. (2000) J. Magn. Reson., 144, 156–161.Google Scholar
  32. Marassi, F.M., Ramamoorthy, A. and Opella, S.J. (1997) Proc. Natl. Acad. Sci. USA, 94, 8551–8556.Google Scholar
  33. McDermott, A., Polenova, T., Bockmann, A., Zilm, K., Paulsen, E.K., Martin, R.W. and Montelione, G.T. (2000) J. Biomol. NMR, 16, 209–219.Google Scholar
  34. Middleton, D.A., Rankin, S., Esmann, M. and Watts, A. (2000) Proc. Natl. Acad. Sci. USA, 97, 13602–13607.Google Scholar
  35. Naito, A., Ganapathy, S., Akasaka, K. and McDowell, C.A. (1981) J. Chem. Phys., 74, 3190–3197.Google Scholar
  36. Opella, S.J. (1997) Nat. Struct. Biol., 4, 845–848.Google Scholar
  37. Opella, S.J., Marassi, F.M., Gesell, J.J., Valente, A.P., Kim, Y., Oblatt-Montal, M. and Montal, M. (1999) Nat. Struct. Biol., 6, 374–379.Google Scholar
  38. Opella, S.J., Stewart, P.L. and Valentine, K.G. (1987) Quart. Rev. Biophys., 19, 7–49.Google Scholar
  39. Palczewski, K., Kamasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, L., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and Miyano, M. (2000) Science, 289, 739–745.Google Scholar
  40. Pauli, J., Baldus, M., van Rossum, B., de Groot, H. and Oschkinat, H., H. (2001) ChemBioChem, 2, 272–281.Google Scholar
  41. Pauli, J., van Rossom, B., Förster, H., de Groot, H.J.M. and Oschkinat, H. (2000) J. Magn. Reson., 143, 411–416.Google Scholar
  42. Pines, A., Gibby, M.G. and Waugh, J.S. (1973) J. Chem. Phys., 59, 569–590.Google Scholar
  43. Preusch, P.C., Norvell, J.C., Cassatt, J.C. and Cassman, M. (1998) Nat. Struct. Biol., 5, 13–14.Google Scholar
  44. Ramamoorthy, A., Wu, C.H. and Opella, S.J. (1999) J. Magn. Reson., 140, 131–140.Google Scholar
  45. Robyr, P., Tomaselli, M., Straka, J., Grob-Pisano, C., Suter, U.W., Meier, B.H. and Ernst, R.R. (1995) Mol. Phys., 84, 995–1020.Google Scholar
  46. Russell, R.B. and Eggleston, D.S. (2000) Nat. Struct. Biol., 7, 928–930.Google Scholar
  47. Schulte-Herbrüggen, T., Untidt, T.S., Nielsen, N.C. and Sørensen, O.W. (2001) J. Chem. Phys., 115, 8506–8517.Google Scholar
  48. Shaka, A.J., Keeler, J. and Freeman, R. (1983) J. Magn. Reson., 53,313–340.Google Scholar
  49. States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.Google Scholar
  50. Straus, S.K., Bremi, T. and Ernst, R.R. (1998) J. Biomol. NMR, 12,39–50.Google Scholar
  51. Szeverenyi, N.M., Sullivan, M.J. and Maciel, G.E. (1982) J. Magn. Reson., 47, 462–475.Google Scholar
  52. Tan, W.M., Gu, Z., Zeri, A.C. and Opella, S.J. (1999) J. Biomol. NMR, 13, 337–342.Google Scholar
  53. Teller, D.G., Okada, T., Behnke, C.A., Palezewski, K. and Stenkamp, R.E. (2001) Biochemistry, 40, 7761–7772.Google Scholar
  54. Teng, Q., Iqbal, M. and Cross, T.A. (1992) J. Am. Chem. Soc., 114,5312–5321.Google Scholar
  55. Tycko, R. (1996) J. Biomol. NMR, 8, 239–251.Google Scholar
  56. Unger, V.M., Hargrave, P.A., Baldwin, J.M. and Schertler, G.F.X. (1997) Nature, 389, 203–206. 247Google Scholar
  57. Wallin, E. and von Heijne, G. (1998) Protein Sci., 7, 1029–1038.Google Scholar
  58. Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., Song, S., Nishimura, K., Gan, Z., Fu, R., Quine, J.R. and Cross, T.A. (2000) J. Magn. Reson., 144, 162–167.Google Scholar
  59. Weiss, M.S. and Schulz, G.E. (1992) J. Mol. Biol., 227, 493–509.Google Scholar
  60. Weiss, M.S., Abele, U., Weckesser, J., Welte, W., Schiltz, E. and Schulz, G.E. (1991) Science, 254, 1627–1630.Google Scholar
  61. Weliky, D.P. and Tycko, R. (1996) J. Am. Chem. Soc., 118, 8487–8488.Google Scholar
  62. White, S.H. and Wimley, W.C. (1999) Annu. Rev. Biophys. Biomol. Struct., 28, 319–365.Google Scholar
  63. Wishart, D.S. and Sykes, B.D. (1994) Meth. Enzymol., 239, 363–392.Google Scholar
  64. Wu, C.H., Ramamoorthy, A., Gierasch, L.M. and Opella, S.J. (1995) J. Am. Chem. Soc., 117, 6148–6149.Google Scholar
  65. Wu, C.H., Ramamoorthy, A. and Opella, S.J. (1994) J. Magn. Reson. A, 109, 270–272.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Laboratory for Biomolecular NMR Spectroscopy, Department of Molecular and Structural BiologyUniversity of AarhusAarhus CDenmark

Personalised recommendations