Plant and Soil

, Volume 218, Issue 1–2, pp 273–284 | Cite as

Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensison early and late yield components in low fertility sulphate acid soils of Vietnam

  • V. Trân Van
  • O. Berge
  • S. Ngô Kê
  • J. Balandreau
  • T. Heulin


TVV75, a strain of Burkholderia vietnamiensis, was isolated from an acid sulphate soil of south Vietnam, and selected for its high in vitro nitrogen fixation potential. This plant growth-promoting rhizobacterium (PGPR) had been used in a previously reported pot experiment. It was used in two new pot experiments and four field experiments to inoculate lowland rice at sowing and at transplanting, in three different South Vietnam acid sulphate soils. We first studied the effect of inoculation during early plant growth in nurseries. Seedlings were then transplanted both to field and pots. Treatments included two levels of inoculation (inoculated vs uninoculated) and three levels of N fertilizer (0, recommended rate and half this rate), in a randomized block design with six replicates. In all four experiments nitrogen appeared to be the limiting factor for yield. Inoculation had already had a strong beneficial effect at the transplanting stage (day 24), as measured by shoot weight (+33%) root weight (+57%), and leaf surface (+30% at day 14). Final results indicated that inoculation of rice with B. vietnamiensis TVV75 significantly increased several yield components, resulting in a final 13 to 22% increase in grain yield. A late yield component, 1,000 grain weight, was significantly increased by inoculation, but not by nitrogen fertilizers, in all pot and field experiments, indicating a long-lasting effect of the inoculated bacteria. It was possible to evaluate the nitrogen fertilizer equivalent of inoculation (NFEI): at the medium rate of N fertilizer, inoculation ensured a yield equivalent to that obtained in the uninoculated control with 25 to 30 kg more nitrogen fertilizer. Comparison of the local cost of NFEI kg N-fertilizer and the cost of inoculation would help in making the decision to inoculate.

β proteo-bacteria Burkholderia vietnamiensis inoculation lowland rice nitrogen nutrition PGPR effect acid sulphate soil yield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berge O, Fages J, Mulard D and Balandreau J 1990 Effects of inoculation with Bacillus circulans and Azospirillum lipoferum on crop-yield in field grown maize. Biol. Fertil. Soils 11, 210–215.CrossRefGoogle Scholar
  2. Bevivino A, Tabacchioni S, Chiarini L, Carusi M V, Del Gallo M and Visca P 1994 Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology 140,1069–1077.PubMedCrossRefGoogle Scholar
  3. Burbage D A and Sasser M 1982 A medium selective for Pseudomonas cepacia. Phytopathol. Abstr. 72, 706. Chanway C P and Nelson L M 1990 Field and laboratory studies of Triticum aestivum L. inoculated with co-existent growthpromoting Bacillus strains. Soil Biol. Biochem. 22, 789–795.Google Scholar
  4. Chiarini L, Bevivino A, Tabacchioni S and Dalmastri C 1998 Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol. Biochem. 30, 81–87.CrossRefGoogle Scholar
  5. Di Cello F Di, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C 1997 Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl. Environ. Microbiol. 63 (11), 4485–4493.PubMedGoogle Scholar
  6. Freitas J R de and Germida J J 1990 Plant growth promoting rhizobacteria for winter wheat. Can. J. Microbiol. 36, 265–272.Google Scholar
  7. Germida J J and Walley F L 1996 Plant growth promoting rhizobacteria alter rooting pattern and arbuscular mycorrhizal fungi colonization of field grown spring wheat. Biol. Fertil. Soils 23, 113–120.Google Scholar
  8. Gillis M, Trân van V, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T and Fernandez M P 1995 Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45, 274–289.Google Scholar
  9. Gouzou L 1992 Devenir d'une population bactérienne inoculée dans la rhizosphère du blé et ses effets sur la plante: cas de Bacillus polymyxa (the dynamic of Bacillus polymyxa in the wheat rhizosphere after inoculation and its effects on the plant growth). Thesis, Nancy University, France, 173 pp.Google Scholar
  10. Hebbar P, Davey A G, Merrin J and Dart P J 1992 Rhizobacteria of maize antagonistic to Fusarium moniliforme, a soil borne fungal pathogen: colonisation of rhizosphere and roots. Soil Biol. Biochem. 24 (10), 989–997.CrossRefGoogle Scholar
  11. Heulin T, Guckert A and Balandreau J 1987 Stimulation of root exudation of rice seedlings by Azospirillum strains: carbon budget under gnotobiotic conditions. Biol. Fertil. Soils 4, 9–14.Google Scholar
  12. Jacoud C, Job D, Wadoux P and Bally R 1999 Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination. Can. J. Microbiol. 45, 339–342.CrossRefGoogle Scholar
  13. Kloepper J W, Scher F M, Laliberte M and Tipping B 1986 Emergence-promoting rhizobacteria: Description and implications for agriculture. In Iron, Siderophores and Plant Diseases. Ed. T R Swinburne. pp 155–164. Plenum, Publishing Corp., New York.Google Scholar
  14. Meyer J M, Trân van V, Stinzi A, Stephan H, Berge O and Winkelmann G 1995 Ornibactin production and transport properties in 284 strains of Burkholderia vietnamiensis and Burkholderia cepacia (formely Pseudomonas cepacia). BioMetals 8, 309–317.PubMedCrossRefGoogle Scholar
  15. Nacamulli C, Bevivino A, Dalmastri C, Tabacchioni S and Chiarini L 1997 Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol. Ecol. 23, 183–193.CrossRefGoogle Scholar
  16. Omar N, Heulin T, Weinhard P, Alaa-el-Din M N and Balandreau J 1989 Field inoculation of rice with in vitro selected plant growth promoting rhizobacteria. agronomie 9, 803–808.Google Scholar
  17. Omar N, Berge O, Shalaan S N, Hubert J L, Heulin T and Balandreau J 1992 Inoculation of Rice with Azospirillum brasilense in Egypt. Results of five different trials between 1985 and 1990. Symbiosis 13, 281–289.Google Scholar
  18. Reynders L and Vlassak K 1982 Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant Soil 66, 217–223.CrossRefGoogle Scholar
  19. Smith R L, Schank S C, Milam J R and Baltensperger A A 1984 Responses of Sorghum and Pennisetum species to the N2-fixing bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 47, 1331–1336.PubMedGoogle Scholar
  20. Tabacchioni S, Bevivino A, Chiarini J L, Visca P and Del Gallo M 1993 Characteristics of two rhizosphere isolates of Pseudomonas cepacia and their potential plant-growth-promoting activity. Microb. Releases 2, 161–168.Google Scholar
  21. Thomas-Bauzon D, Weinhard P, Villecourt P and Balandreau J 1982 The spermosphere model. I. Its use in growing, counting, and isolating N2-fixing bacteria from the rhizosphere of rice. Can. J. Microbiol. 28, 922–928.CrossRefGoogle Scholar
  22. Trân Van V 1994a Burkholderia vietnamiensis sp. nov., une protéobacterie fixatrice d'azote de la rhizosphère du riz isolée d'un sol sulfaté acide: taxonomie et effets de l'inoculation sur la croissance et le rendement du riz. Thèse d'Université, Université de Nancy I, Nancy. France, 360p.Google Scholar
  23. Trân Van V, Mavingui P, Berge O, Balandreau J and Heulin T 1994b Promotion de croissance du riz, en pots, inoculé par un fixateur d'azote Burkholderia vietnamiensis sp. nov. isolé d'un sol sulfaté acide du Vietnam. agronomie 14, 697–707.Google Scholar
  24. Trân Van V, Berge O, Heulin T and Balandreau J 1996 Isolement et activité nitrogénasique de Burkholderia vietnamiensis, bactérie fixatrice d'azote associée au riz (Oryza sativa L.) cultivé sur un sol sulfaté acide du Viêt-nam. agronomie 16, 479–491.Google Scholar
  25. Turner J T and Mackman P A 1991 Factors relating to peanut yield increases following Bacillus subtilis seed treatment. Plant Disease 75, 347–353.CrossRefGoogle Scholar
  26. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J. 1998. Burkholderia graminis sp. nov. a novel species of rhizospheric Burkholderia and reassessment of Pseudomonas phenazinium, P. pyrrocinia and P. glathei into Burkholderia. Int. J. Syst. Bacteriol. 48, 549–563PubMedCrossRefGoogle Scholar
  27. Xu G W and Gross D C 1986 Field evaluations of the interactions among fluorescent pseudomonads, Erwinia carotovora, and potato yields. Phytopathology 76, 423–430.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • V. Trân Van
    • 1
  • O. Berge
    • 2
  • S. Ngô Kê
    • 3
  • J. Balandreau
    • 1
  • T. Heulin
    • 2
  1. 1.Ecologie Microbienne du SolUMR 5557 CNRS-Université Lyon IVilleurbanne cedexFrance
  2. 2.Laboratoire d'Ecologie Microbienne de la Rhizosphère (LEMIR)CEA/Cadarache-DSV-DEVMSt Paul lez Durance cedexFrance
  3. 3.Institute of Tropical BiologyVietnam National Center for Natural Science and TechnologyHô Chi Minh CityVietnam

Personalised recommendations