Photosynthesis Research

, Volume 71, Issue 1–2, pp 91–98 | Cite as

The reaction centre from green sulphur bacteria: progress towards structural elucidation

  • Hervé-W. Rémigy
  • Günter Hauska
  • Shirley A. Müller
  • Georgios Tsiotis


The reaction centre (RC) of green sulphur bacteria is a FeS-type RC, as are the RCs of Photosystems I (PS I) of oxygenic photosynthetic organisms and of heliobacteria. The core domains of both green sulphur bacterial and heliobacterial RCs are considered to be homodimeric, in contrast to those of purple bacteria, PS I and Photosystem II (PS II). This paper briefly describes the techniques of electron microscopy and image processing suited to investigate the structure of these proteins. Recent advances in the study of the structure of the green sulphur bacterial RC, primarily achieved by the application of scanning transmission electron microscopy, are reviewed.

Chlorobium tepidum green sulphur bacteria reaction centre scanning transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blankenship RE, Olson JM and Miller M(1995) Anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Advance in Photosynthesis Vol 2, pp 399–435. Kluwer Academic Publishers, Dordrecht/BostonGoogle Scholar
  2. Bremer A and Aebi U (1994) Negative staining. In: Celis JE (ed) Cell Biology: A Laboratory Handbook, pp 126–134. Academic Press, San Diego, CaliforniaGoogle Scholar
  3. Bretaudière J-P and Frank J (1986) Reconstitution of molecule images analysed by correspondence analysis: a tool for structural interpretation. J Microsc 144: 1–14PubMedGoogle Scholar
  4. Büttner M, Xie DL, Nelson H, Pinther W, Hauska G and Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and in Photosystem I are related. Proc Natl Acad Sci 89: 8135–8139PubMedGoogle Scholar
  5. Dubochet J, Lepault J, Freeman R, Berriman JA and Homo JC (1982) Electron microscopy of frozen water and aqueous solutions. J Microsc 128: 219–237Google Scholar
  6. Engel A (1978) Molecular weight determination by Scanning transmission electron microscopy. Ultramicroscopy 3: 273–281CrossRefPubMedGoogle Scholar
  7. Engel A, Hoenger A, Hefti A, Henn C, Ford RC, Kistler J and Zulauf M (1992) Assembly of 2-D membrane protein crystals: dynamics, crystal order, and fidelity of structure analysis by electron microscopy. J Struc Biol 109: 219–234CrossRefGoogle Scholar
  8. Feiler U and Hauska G (1995) The reaction center from green sulfur bacteria. In: Blankenship RE et al. (eds) Anoxygenic Photosynthetic Bacteria, pp 665–685. Kluwer Academic Publishers, Dordrecht/Boston/LondonGoogle Scholar
  9. Feiler U, Nitschke W and Michel H (1992) Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS centers FA and FB and a bound cytochrome subunit. Biochemistry 31: 2608–2614CrossRefPubMedGoogle Scholar
  10. Francke C, Otte SCM, Miller M, Amesz J and Olson JM (1996) Energy transfer from carotenoid and FMO-protein in subcellular preparations from green sulfur bacteria. Spectroscopic characterization of an FMO-reaction center core complex at low temperature. Photosynth Res 50: 71–77CrossRefGoogle Scholar
  11. Francke C, Permentier HP, Franken EM, Neerken S and Amesz J (1997) Isolation and properties of photochemically active reaction center complexes from the green sulfur bacterium Prosthecochloris aestuarti. Biochemistry 36: 14167–14172CrossRefPubMedGoogle Scholar
  12. Frank J and Radermacher M (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116: 190–199CrossRefPubMedGoogle Scholar
  13. Frankenberg N, Hager-Braun C, Feiler U, Fuhrmann M, Rogl H, Schneebauer N, Nelson N and Hauska G (1996) P840-reaction centres from C. tepidum-quinone analysis and functional reconstitution into lipid vesicles. Photochem Photobiol 64: 14–19Google Scholar
  14. Fromme P and Witt H-T (1998) Improved isolation and crystallization of Photosystem I for structural analysis. Biochim Biophys Acta 1365: 175–184Google Scholar
  15. Golbeck J (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90: 1642–1646PubMedGoogle Scholar
  16. Golbeck J and Bryant D (1991) Photosystem I. In: Lee C-P (ed) Current Topics in Bioenergetics, Vol 16, pp 83–177. Academic Press, New YorkGoogle Scholar
  17. Ghosh R, Hoenger A, Hardmeyer A, Mihailescu D, Bachofen R, Engel A and Rosenbusch J-P (1993) 2-Dimensional crystallization of the light-harvesting complex from Rhodospirillum-rubrum. J Mol Biol 231: 501–504CrossRefPubMedGoogle Scholar
  18. Griesbeck C, Hager-Braun C, Rogl H and Hauska G (1998) Quantitation of P840 reaction center preparations from C. tepidum: chlorophylls and FMO-protein. Biochim Biophys Acta 1365: 285–293Google Scholar
  19. Hager-Braun C, Jarosch U, Hauska G, Nitschke W and Riedel A (1997) EPR studies of the terminal electron acceptors of the green sulfurn bacterial reaction center, revisited. Photosynth Res 51: 127–136CrossRefGoogle Scholar
  20. Hager-Braun C, Xie D-L, Jarosch U, Herold E, Büttner M, Zimmermann R, Deutzmann R, Hauska G and Nelson N (1995) Stable photobleaching of P840 in Chlorobium reaction center preparations: presence of the 42-kDa bacteriochlorophyll a protein and a 17-kDa polypeptide. Biochemistry 34: 9617–9642CrossRefPubMedGoogle Scholar
  21. Haschenmeyer RH and Meyers RJ (1972) Negative staining. In: MA H (ed) Principles and Techniques of Electron Microscopy, Vol 2, pp 101–107. Van Nostrand, New YorkGoogle Scholar
  22. Hasler L, Ghanotakis D, Fedtke B, Spyridaki A, Miller M, Müller SA, Engel A and Tsiotis G (1997) Structural analysis of Photosystem II: comparative study of cyanobacterial and higher plant Photosystem II complexes. J Struct Biol 119: 273–283CrossRefPubMedGoogle Scholar
  23. Hauska G, Schoedl T, Remigy HW and Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507: 260–277PubMedGoogle Scholar
  24. Henderson R and Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32CrossRefPubMedGoogle Scholar
  25. Henderson R, Baldwin JM, Downing KH, Lepault J and Zemlin F (1986). Structure of purple membrane from Halobacterium halobium: Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19: 147–178CrossRefGoogle Scholar
  26. Hurt EC and Hauska G (1984) Purification of membrane-bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum. FEBS Lett 168: 149–154CrossRefGoogle Scholar
  27. Illinger N, Xie D-L, Hauska G and Nelson N (1993) Identification of the subunit carrying FeS centers A and B in the P840 reaction center preparation of Chlorobia limicola. Photosynth Res 38: 111–114CrossRefGoogle Scholar
  28. Jordan P, Fromme P Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411 (6840): pp 909–17CrossRefPubMedGoogle Scholar
  29. Karrasch S, Typke D, Walz T, Miller M, Tsiotis G and Engel A (1996) Highly ordered two-dimensional crystals of Photosystem I reaction center from Synechococcus sp.: functional and structural analyses. J Mol Biol 262: 336–348CrossRefPubMedGoogle Scholar
  30. Kjaer B, Frigaard NU, Yang F, Zybailov B, Miller M, Golbeck JH and Scheller HV (1998) Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. Biochemistry 37(10): 3237–3242CrossRefPubMedGoogle Scholar
  31. Kjaer B, Jung YS, Yu LA, Golbeck JH and Scheller HV (1994) Iron-sulfur centers in the photosynthetic reaction center complex from Chlorobium vibrioforme. Differences from and similarities to the iron-sulfur centers in Photosystem I. Photosynth Res 41(1): 105–114CrossRefGoogle Scholar
  32. Krauss N, Schubert W-D, Klukas O, Fromme P, Witt H-T and Saenger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction center and core antenna system. Nature Struct Biol 3: 965–973CrossRefPubMedGoogle Scholar
  33. Kusumoto N, Setif P, Brettel K, Seo D and Sakurai H (1999) Electron transfer kinetics in purified reaction centers from the green sulfur bacterium C. tepidum studied by multiple-flash excitation. Biochemistry 38: 12124–12137CrossRefPubMedGoogle Scholar
  34. Kusumoto N, Inoue K, Nasu H and Sakurai H (1994) Preparation of a photoactive reaction center complex containing photoreducible FeS centers and photooxidizable cytochrome c from the the green sulfur bacterium C. tepidum. Plant Cell Physiol 35: 17–25Google Scholar
  35. Li YF, Zhou W, Blankenship RE and Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from C. tepidum. J Mol Biol 271(3): 456–471CrossRefPubMedGoogle Scholar
  36. Liebl U, Mockensturm-Wilson M, Trost JT, Brune D, Blankenship RE and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilus-structural implications and relations to other photosystems. Proc Natl Acad Sci 90: 7124–7128PubMedGoogle Scholar
  37. Mathews BW, Fenna RE, Bolognesi MC, Schmid MF and Olson JM (1979) Structure of bacteriochlorophyll a protein from the green photosynthetic bacterium Prostecochloris aestuarii. J Mol Biol 131: 259–285CrossRefPubMedGoogle Scholar
  38. Müller SA and Engel A (1998) Mass measurement in the scanning transmission electron microscope: a powerful tool for studying membrane proteins. J Struct Biol 121: 219–230CrossRefPubMedGoogle Scholar
  39. Müller SA and Engel A (2001) Structure and mass analysis by scanning transmission electron microscopy. Micron 32: 21–31CrossRefPubMedGoogle Scholar
  40. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A and Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 5: 599–605Google Scholar
  41. Neerken S, Permentier HP, Francke C, Aartsma TJ and Amesz J (1998) Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii. Biochemistry 37(30): 10792–10797CrossRefPubMedGoogle Scholar
  42. Nitschke W and Rutherford AW (1991) Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem Sci 16(7): 241–245CrossRefPubMedGoogle Scholar
  43. Oh-Oka H, Kamei S, Matsubara H, Lin S, van Noort PI and Blankenship RE (1998) Transient absorption spectroscopy of energy-transfer and trapping processes in the reaction center complex of Chlorobium tepidum. J Phys Chem 102(42): 8190–8195Google Scholar
  44. Oh-Oka H, Kakutani S, Kamei S, Matsubara H, Iwaki M and Itoh S (1995) Highly purified photosynthetic reaction center (PscA/cytochrome c551)2 complex of the green sulfur bacterium Chlorobium limicola. Biochemistry 34(40): 13091–13097CrossRefPubMedGoogle Scholar
  45. Oh-Oka H, Kakutani S, Matsubara H, Malkin R and Itoh S (1993) Isolation of the photoactive reaction center complex that contains three types of FeS centers and a cytochrome c subunit from the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum, strain Larsen. Plant Cell Physiol 34: 93–101Google Scholar
  46. Oh-Oka H, Kamei S and Matsubara H (1995) Two molecules of cytochrome c function as the electron donors to P840 in the reaction center complex isolated from a green bacterium C. tepidum. FEBS Lett 365: 30–34CrossRefPubMedGoogle Scholar
  47. Okkels JS, Kjær B, Hansson Ö, Svendsen I, Möller BL and Scheller HV (1992) A membrane-bound monoheme cytochrome c 551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. J Biol Chem 267: 21139–21145PubMedGoogle Scholar
  48. Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67: 61–75CrossRefGoogle Scholar
  49. Pascual A, Barcena M, Merelo JJ and Carazo JM (2000) Mapping and fuzzy classification of macromolecular images using self-organizing neural networks. Ultramicroscopy 84: 85–99CrossRefPubMedGoogle Scholar
  50. Permentier HP, Schmidt KA, Kobayashi M, Akiyama M, Hager-Braun C, Neerken S, Miller M and Amesz J (2000) Composition and optical properties of reaction centre core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth Res 64: 27–39CrossRefGoogle Scholar
  51. Rémigy H-W, Fotiadis D, Wolpensinger B, Müller SA, Engel A, Hauska G and Tsiotis G (1998) Evidence for the association of three FMO subunits per reaction center of C. tepidum by scanning transmission electron microscopy. In: Garab G (ed) XIth International Congress on Photosynthesis, pp 531–534. Kluwer Academic Publishers, Dordrecht/Boston/LondonGoogle Scholar
  52. Rémigy H-W, Stahlberg H, Fotiadis D, Wolpensinger B, Engel A, Hauska G and Tsiotis G (1999) The reaction center complex from the green sulfur bacterium C. tepidum: a structural analysis by scanning transmission electron microscopy. J Mol Biol 290: 851–858CrossRefPubMedGoogle Scholar
  53. Saxton WO and Baumeister W (1982) The correlation averaging of the regularly arranged bacterial cell envelope protein. J Microsc 127: 127–138PubMedGoogle Scholar
  54. Schmidt KA and Trissl H-W (1998) Combined fluorescence and photovoltage studies on chlorosome containing bacteria. Photosynth Res 58: 57–70CrossRefGoogle Scholar
  55. Schubert W-D, Klukas O, Krauss N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769CrossRefPubMedGoogle Scholar
  56. Tsiotis G, Hager-Braun C, Wolpensinger B, Engel A and Hauska G (1997) Structural analysis of the photosynthetic reaction center from the green sulfur bacterium C. tepidum. Biochim Biophys Acta 1322: 163–172Google Scholar
  57. Tsiotis G, Psylakakis M, Wolpensinger B, Lustig A, Engel A and Ghanotakis D (1999) Investigation of the structure of spinach Photosystem II reaction center complex. Eur J Biochem 259: 320–324CrossRefPubMedGoogle Scholar
  58. van Heel M (1984) Multivariate statistical classification of noise images (randomly oriented biological macromolecules). Ultramicroscopy 13: 165–184CrossRefPubMedGoogle Scholar
  59. van Heel M and Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6: 187–194PubMedGoogle Scholar
  60. Vassiljev UR, Ronan MT, Hauska G and Golbeck JH (2000) The bound electron acceptors in green sulfur bacteria: resolution of the g-tensor for the Fx from iron-sulfur cluster in C. tepidum. Biophys J 78: 3160–3169PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Hervé-W. Rémigy
    • 1
    • 2
  • Günter Hauska
    • 3
  • Shirley A. Müller
    • 2
  • Georgios Tsiotis
    • 1
  1. 1.Division of Biochemistry, Department of ChemistryUniversity of CreteHeraclionGreece
  2. 2.M. E. Müller Institute for Microscopic Structural Biology, BiozentrumUniversity of BaselBaselSwitzerland
  3. 3.Lehrstuhl für Zellbiologie und PflanzenphysiologieUniversity of RegensburgRegensburgGermany

Personalised recommendations